Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Normal mode splitting and cooling in strong coupling optomechanical cavity

Chen Hua-Jun Mi Xian-Wu

Citation:

Normal mode splitting and cooling in strong coupling optomechanical cavity

Chen Hua-Jun, Mi Xian-Wu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A model describing optomechanical dynamics via radiation-pressure coupling with a driven optical cavity is investigated by a linearized quantum Langevin equation. The spectrum of the oscillator presents normal mode splitting with the increase of the input laser power in strong coupling regime and our results are in good agreement with the experimental results. The effective mechanical damping and the resonance frequency shift are derived. The redshifted sideband leads to the cooling of the mechanical oscillator, and the blueshifted motional sideband results in amplification. Furthermore, an approximate mechanism is introduced to analyze the cooling of the mechanical oscillator. Since both the normal mode splitting and cooling require working in the resolved sideband regime, whether the normal mode splitting influences the cooling of the mirror is considered. Meanwhile, we give three key factors influencing the cooling of mechanical oscillator, these being initial bath temperature, input laser power and mechanical quality factor.
    [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • [1] Ye Zhi-Bin, Jiang Shu, Wang Hai-Lun, Wu Fei, Deng Xiao-Lei, Wang Jian-Xiao. Influence of pumping light uniformity on laser wavefront aberration in direct-liquid-cooled thin-disk laser. Acta Physica Sinica, 2022, 71(5): 054202. doi: 10.7498/aps.71.20211811
    [2] Zhao Xin, Yang Xiao-Hu, Zhang Guo-Bo, Ma Yan-Yun, Liu Yan-Peng, Yu Ming-Yang. Influence of radiative cooling effect on the plasma filamentations in the interaction of high-power laser with planar targets. Acta Physica Sinica, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [3] Liu Ni, Zhang Xiao-Fang, Liang Jiu-Qing. Dynamical phase transition and selective energy exchange in dual-cavity optochanical systems. Acta Physica Sinica, 2021, 70(14): 140301. doi: 10.7498/aps.70.20210178
    [4] Influence of pumping light uniformity on laser wavefront aberration in the direct-liquid-cooled thin-disk laser. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211811
    [5] Chen Guo-Hua, Shi Ke-Jun, Chu Jin-Ke, Wu Hao, Zhou Chi-Lou, Xiao Shu. Numerical simulation and optimization of cooling flow field of cylindrical cathode with annular magnetic field. Acta Physica Sinica, 2021, 70(7): 075203. doi: 10.7498/aps.70.20201368
    [6] Liu Ni, Wang Jian-Fen, Liang Jiu-Qing. Ground-state cooling of mechanical resonator in double optical cavity. Acta Physica Sinica, 2020, 69(6): 064202. doi: 10.7498/aps.69.20191541
    [7] Chen Tao, Yan Bo. Laser cooling and trapping of polar molecules. Acta Physica Sinica, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [8] Xu Qin-Fang, Yin Mo-Juan, Kong De-Huan, Wang Ye-Bing, Lu Ben-Quan, Guo Yang, Chang Hong. Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock. Acta Physica Sinica, 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [9] Zhang Yun-Guang, Zhang Hua, Dou Ge, Xu Jian-Gang. Laser cooling of OH molecules in theoretical approach. Acta Physica Sinica, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [10] Zhang Yong-Tang. Coherent perfect absorption and transmission of a generalized three-mode cavity optico-mechanical system. Acta Physica Sinica, 2017, 66(10): 107101. doi: 10.7498/aps.66.107101
    [11] Xiao Jia, Xu Da-Hai, Yi Zhen, Gu Wen-Ju. Optomechanical interaction with triple membranes. Acta Physica Sinica, 2016, 65(12): 124202. doi: 10.7498/aps.65.124202
    [12] Jia You-Hua, Gao Yong, Zhong Biao, Yin Jian-Ping. Theoretical analysis on cavity-enhanced laser cooling of Er3+-doped glasses. Acta Physica Sinica, 2014, 63(7): 074203. doi: 10.7498/aps.63.074203
    [13] Lu Hai-Bo, Liu Wei-Qiang. Cooling efficiency investigation of forward-facing cavity and opposing jet combinatorial thermal protection system. Acta Physica Sinica, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [14] Li San-Wei, Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Jiang Xiao-Hua, Wang Zhe-Bin, Yang Jia-Min, Jiang Shao-En. Quantitative study of radiation temperature for gold hohlraum on SG-Ⅱ laser facility. Acta Physica Sinica, 2011, 60(5): 055207. doi: 10.7498/aps.60.055207
    [15] Gao Feng, Chang Hong, Wang Xin-Liang, Tian Xiao, Zhang Shou-Gang. The theoretical and experimental investigation of repumping laser impact on cooling and trapping of strontium atoms. Acta Physica Sinica, 2011, 60(5): 050601. doi: 10.7498/aps.60.050601
    [16] Zhang Qin, Jin Kang, Tang Yuan-He, Qu Guang-Hui. The radiation pressure and laser cooling of a V-type three level atom. Acta Physica Sinica, 2011, 60(5): 053204. doi: 10.7498/aps.60.053204
    [17] Ding Cai-Ying, Tan Lei, Liu Li-Wei, Xu Yan. Light forces on moving atom in micro-cavity. Acta Physica Sinica, 2008, 57(9): 5612-5619. doi: 10.7498/aps.57.5612
    [18] FENG JIAN, WANG JI-SUO, GAO YUN-FENG, ZHAN MING-SHENG. INFLUENCE OF NONLINEARITIES OF BOTH THE FIELD AND THE INTENSITY-DEPENDENT ATOM-FIELD COUPLING ON THE EMISSION SPECTRUM OF AN ATOM IN A CAVITY. Acta Physica Sinica, 2001, 50(7): 1279-1283. doi: 10.7498/aps.50.1279
    [19] HE LIN-SHENG, JIANG HAI-HE. . Acta Physica Sinica, 1995, 44(12): 1904-1913. doi: 10.7498/aps.44.1904
    [20] DAI ZI-GAO, LU TAN. COOLING OF A STRANGE STAR. Acta Physica Sinica, 1994, 43(2): 198-204. doi: 10.7498/aps.43.198
Metrics
  • Abstract views:  6568
  • PDF Downloads:  875
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2011
  • Accepted Date:  09 August 2011
  • Published Online:  05 June 2011

/

返回文章
返回