Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles analysis of properties of Cu surfaces

Shu Yu Zhang Yan Zhang Jian-Min

Citation:

First-principles analysis of properties of Cu surfaces

Shu Yu, Zhang Yan, Zhang Jian-Min
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Using first-principles pseudopotential plane wave method, the energy, atomic geometry and electronic density of states of FCC Cu crystal and its (111), (110) and (100) surface models were calculated and analyzed. According to the calculated results of the surface energy, the structural stability of the Cu surfaces increases for Cu (110), Cu (100), Cu (111) surfaces successively. The relaxation extent of the surface atoms decreases successively with the increasing the number of the layers. For the inwards relaxation of the surface layer atoms, Cu (110) surface moves maximum, Cu (100) takes second place, Cu (111) surface moves least. It was found that the relaxation of the surface atom layers not only causes the change of geometrical structures of the surface models but also leads to the change of peak contour of density of states (DOS) of surface layer atoms comparing with crystal inside. The increment of the total energy caused by these change is the main reason of the surface energy. And that the Cu (110) surface having higher activity than that of Cu(111) and Cu(100) surfaces may be attributed to its apparent rising of the surface layer atoms DOS in the high energy level.
    • Funds: Project supported by the State Key Development for Basic Research of China (Grant No. 2010CB631002), and the National Natural Science Foundation of China (Grant No. 51071098).
    [1]

    DesjonquèresMC, Spanjaard D 1995 Concepts in Surface Science (New York: Springer Press) p1

    [2]

    Kittel C 1996 Introduction to Solid State Physics 7th Ed (New York: Wiley Press) p152

    [3]

    Smith C J 1976 Metals Reference Book (5th Ed.) (London: Butterworrd Press ) p186

    [4]

    Davis H L, Noonan J R 1983 Surf. Sci. 126 245

    [5]

    Noonan J R, Davis H L 1982 Bull. Am. Phys. Soc. 27 237

    [6]

    Lind D M, Dunning F B, Walters G K, Davis H L 1987 Phys. Rev. B 35 9037

    [7]

    Adams D L, Nielsen H B, Andersen J N 1983 Surf. Sci. 128 294

    [8]

    Davis H L, Noonan J R, Jenkins L H 1979 Surf. Sci. 83 559

    [9]

    Noonan J R, Davis H L 1980 Surf. Sci. 99, L424

    [10]

    Tear S P, Röll K, Prutton M 1981 J. Phys. C 14 3297.

    [11]

    Lindgren S Å , Wallde? L, Rundgren J, Westrin P 1984 Phys. Rev. B 29 576

    [12]

    Bartoš I, Jaroš P, Barbieri A, van Hove M A, Chung W F, Cal Q, Altman M S 1995 Surf. Sci. Lett. 2 477

    [13]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [14]

    de Boer F R, Boom R, MattensWC M, Miedema A R, Niessen A K 1988 Cohesion in Metals (Amsterdam: North-Holland Press)

    [15]

    Domain C, Becquart C S 2002 Phys. Rev. B 65 024103

    [16]

    Khein A, Singh D J, Umrigar C J 1995 Phys. Rev. B 51 4105

    [17]

    Da Silva J L F 2002 Ph. D. Dissertation (Berlin: Technical University Berlin, Germany)

    [18]

    Da Silva J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 69 245411

    [19]

    Rodach T, Bohnen K P, Ho K M 1993 Surf. Sci. 286 66

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Sinnott S B, Stave M S, Raeker T J, de Pristo A E 1991 Phys. Rev. B 44 8927

    [22]

    Ross C, Schirmer B, Wuttig M, Gauthier Y, Bihlmayer G, Blügel S 1998 Phys. Rev. B 57 2607

    [23]

    Sklyadneva I Y, Rusina G G, Chulkov E V 1998 Surf. Sci. 416 17

    [24]

    Da Silva J L F, Barreteau C, Schroeder K, Schroeder K, Blügel S 2006 Phys. Rev. B 73 125402

    [25]

    Galanakis I, Bihlmayer G, Bellini V, Papanikolaou N, Zeller R, Blögel S, Dederichs P H 2002 Europhys. Lett. 58 751

    [26]

    Skriver H L, Rosengaard N M 1992 Phys. Rev. B 46 7157

    [27]

    Vitos L, Skriver H L, Kollár J 1999 Surf. Sci. 425 212

    [28]

    Tian Z J, Rahman T S 1993 Phys. Rev. B 47 9751

    [29]

    Raouafi F, Barreteau C, Desjonquères M C, Spanjaard D 2002 Surf. Sci. 505 183

    [30]

    Wan J, Shen S G, Fan X Q 1997 Acta Phys. Sin. 46 1161 (in Chinese) [万钧, 申三国, 范希庆 1997 物理学报 46 1161]

    [31]

    Zhang J M, Li H Y, Xu K W 2006 J. Phys. Chem. Solids 67 1623

    [32]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [33]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [34]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5390

    [39]

    Xiao J M, Zhu F W 1999 Energetics of Materials (Shanghai: Shanghai Science and Technology Press) p417 (in Chinese) [肖纪美, 朱逢吾 1999 材料能量学 (上海: 上海科学技术出版社) 第417页]

  • [1]

    DesjonquèresMC, Spanjaard D 1995 Concepts in Surface Science (New York: Springer Press) p1

    [2]

    Kittel C 1996 Introduction to Solid State Physics 7th Ed (New York: Wiley Press) p152

    [3]

    Smith C J 1976 Metals Reference Book (5th Ed.) (London: Butterworrd Press ) p186

    [4]

    Davis H L, Noonan J R 1983 Surf. Sci. 126 245

    [5]

    Noonan J R, Davis H L 1982 Bull. Am. Phys. Soc. 27 237

    [6]

    Lind D M, Dunning F B, Walters G K, Davis H L 1987 Phys. Rev. B 35 9037

    [7]

    Adams D L, Nielsen H B, Andersen J N 1983 Surf. Sci. 128 294

    [8]

    Davis H L, Noonan J R, Jenkins L H 1979 Surf. Sci. 83 559

    [9]

    Noonan J R, Davis H L 1980 Surf. Sci. 99, L424

    [10]

    Tear S P, Röll K, Prutton M 1981 J. Phys. C 14 3297.

    [11]

    Lindgren S Å , Wallde? L, Rundgren J, Westrin P 1984 Phys. Rev. B 29 576

    [12]

    Bartoš I, Jaroš P, Barbieri A, van Hove M A, Chung W F, Cal Q, Altman M S 1995 Surf. Sci. Lett. 2 477

    [13]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [14]

    de Boer F R, Boom R, MattensWC M, Miedema A R, Niessen A K 1988 Cohesion in Metals (Amsterdam: North-Holland Press)

    [15]

    Domain C, Becquart C S 2002 Phys. Rev. B 65 024103

    [16]

    Khein A, Singh D J, Umrigar C J 1995 Phys. Rev. B 51 4105

    [17]

    Da Silva J L F 2002 Ph. D. Dissertation (Berlin: Technical University Berlin, Germany)

    [18]

    Da Silva J L F, Schroeder K, Blügel S 2004 Phys. Rev. B 69 245411

    [19]

    Rodach T, Bohnen K P, Ho K M 1993 Surf. Sci. 286 66

    [20]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [21]

    Sinnott S B, Stave M S, Raeker T J, de Pristo A E 1991 Phys. Rev. B 44 8927

    [22]

    Ross C, Schirmer B, Wuttig M, Gauthier Y, Bihlmayer G, Blügel S 1998 Phys. Rev. B 57 2607

    [23]

    Sklyadneva I Y, Rusina G G, Chulkov E V 1998 Surf. Sci. 416 17

    [24]

    Da Silva J L F, Barreteau C, Schroeder K, Schroeder K, Blügel S 2006 Phys. Rev. B 73 125402

    [25]

    Galanakis I, Bihlmayer G, Bellini V, Papanikolaou N, Zeller R, Blögel S, Dederichs P H 2002 Europhys. Lett. 58 751

    [26]

    Skriver H L, Rosengaard N M 1992 Phys. Rev. B 46 7157

    [27]

    Vitos L, Skriver H L, Kollár J 1999 Surf. Sci. 425 212

    [28]

    Tian Z J, Rahman T S 1993 Phys. Rev. B 47 9751

    [29]

    Raouafi F, Barreteau C, Desjonquères M C, Spanjaard D 2002 Surf. Sci. 505 183

    [30]

    Wan J, Shen S G, Fan X Q 1997 Acta Phys. Sin. 46 1161 (in Chinese) [万钧, 申三国, 范希庆 1997 物理学报 46 1161]

    [31]

    Zhang J M, Li H Y, Xu K W 2006 J. Phys. Chem. Solids 67 1623

    [32]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [33]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [34]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5390

    [39]

    Xiao J M, Zhu F W 1999 Energetics of Materials (Shanghai: Shanghai Science and Technology Press) p417 (in Chinese) [肖纪美, 朱逢吾 1999 材料能量学 (上海: 上海科学技术出版社) 第417页]

  • [1] Zheng Xu, Li Zhao, Gu Yue-Liang, Yin Shuai-Shuai, Jiang Ji-Chao, Guo Pu, Qiu Zhi-Yong, Li Xiao-Long. Surface Structure of BaTiO3 Single Crystal and the Influence of pH Value of Liquid on Its Surface. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240084
    [2] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [3] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [4] Chen Xian, Wang Yan-Wu, Wang Xiao-Yan, An Shu-Dong, Wang Xiao-Bo, Zhao Yu-Qing. Effect of titanium ion energy on surface structure during the amorphous titanium dioxide film deposition. Acta Physica Sinica, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [5] Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Study on the atomic and electronic structures of BiOCl{001} surface using first principles. Acta Physica Sinica, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [6] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [7] Chen Gong-Bao, Lu Wen-Jiang, Tang Fu-Ling, Xie Yong. Liquid-like structure and self-diffusion channels on Al surfaces. Acta Physica Sinica, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [8] Wang Bo, Zhang Jian-Min, Yin Bao-Xiang, Lu Yan-Dong, Gan Xiu-Ying, Xu Ke-Wei. Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals. Acta Physica Sinica, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [9] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [10] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [11] Xiao Bing, Feng Jing, Chen Jing-Chao, Yan Ji-Kang, Gan Guo-You. Study of rutile (110) surface STM image via ab initio simulation. Acta Physica Sinica, 2008, 57(6): 3769-3774. doi: 10.7498/aps.57.3769
    [12] Huang Jin, Sun Qi-Cheng. Experimental study and analysis of energy evolution of liquid foam drainage in one dimension. Acta Physica Sinica, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [13] Zheng Rui-Lun, Tao Ye. The influence of shape and atomicity on the surface energy of nanocrystal. Acta Physica Sinica, 2006, 55(4): 1942-1946. doi: 10.7498/aps.55.1942
    [14] Dai Jia-Yu, Zhang Dong-Wen, Yuan Jian-Min. Reconfiguration of GaAs(110) surface with the adsorption of Xe atoms. Acta Physica Sinica, 2006, 55(11): 6073-6079. doi: 10.7498/aps.55.6073
    [15] Zhang Chao, Tang Xin, Wang Yong-Liang, Zhang Qing-Yu. Study on the influence of substitutional impurity on the stability of noble metal (111) surfaces by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
    [16] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [17] Yang Chun, Li Yan-Rong, Xue Wei-Dong, Tao Bai-Wan, Liu Xing-Zhao, Zhang Ying, Huang Wei. Study on the structure and energy of the (0001) surface of α-Al2O3 substrate. Acta Physica Sinica, 2003, 52(9): 2268-2273. doi: 10.7498/aps.52.2268
    [18] Zhang Jian-Min, Xu Ke-Wei, Ma Fei. Calculation of surface energy of Cu crystal with modified embedded-atom method. Acta Physica Sinica, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [19] Liu Hong. Surface energy of the biaxial nematic liquid crystal. Acta Physica Sinica, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
    [20] TU XIU-WEN, GAI ZHENG. ATOMIC STRUCTURE OF THE Ge(112)-(4×1)-In RECONSTRUCTION. Acta Physica Sinica, 2001, 50(12): 2439-2445. doi: 10.7498/aps.50.2439
Metrics
  • Abstract views:  7925
  • PDF Downloads:  1059
  • Cited By: 0
Publishing process
  • Received Date:  14 December 2010
  • Accepted Date:  25 April 2011
  • Published Online:  05 January 2012

/

返回文章
返回