Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential

Chang Long Jian Yong-Jun

Citation:

Time periodic electroosmotic flow of the generalized Maxwell fluids between two micro-parallel plates with high Zeta potential

Chang Long, Jian Yong-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this study, semi-analytical solutions are presented for the time periodic (electroosmotic flow) of linear viscoelastic fluids between micro-parallel plates. The linear viscoelastic fluids used here are described by the general Maxwell model. The solution involves analytically solving the nonlinear Poisson-Boltzmann (P-B) equation, the Cauchy momentum equation and the general Maxwell constitutive equation. By numerical computations, the influences of the dimensionless wall Zeta potential0, the periodic EOF electric oscillating Reynolds number Re, and normalized relaxation times 1 on velocity profiles are presented. Results show that for prescribed electrokinetic width K, relaxation time 1 and oscillating Reynolds number Re, higher Zeta potential 0 will lead to larger amplitude of EOF velocity, and the variation of velocity is restricted to a very narrow region close to the Electric double-layer. In addition, with the increase of relaxation time 1, the elasticity of the fluid becomes conspicuous and the velocity variations can be expanded to the whole flow field. For prescribed Re, longer relaxation time 1 will lead to quick change of the EOF velocity profile, and the amplitude becomes larger gradually.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11062005), Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20111501120001), Opening Fund of State Key Laboratory of Nonlinear Mechanics, the Inner Mongolia Natural Science Foundation of China (Grant No. 2010BS0107), the research start up fund for excellent talents at Inner Mongolia University (Grant No. Z20080211), the support of Natural Science Key Fund of Inner Mongolia (Grant No: 2009ZD01), and the Key Programs of the Inner Mongolia Finances and Economic College.
    [1]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [2]

    Bayraktar T, Pidugu S B 2006 Int. J. Heat Mass Transfer 49 815

    [3]

    Burgreen D, Nakache F R 1964 J. Phys. Chem. 68 1084

    [4]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [5]

    Tsao H K 2000 J. Colloid Interface Sci. 225 247

    [6]

    Kang Y J, Yang C, Huang X Y 2002 J. Colloid Interface Sci. 253 285

    [7]

    Hsu J P, Kao C Y, Tseng S J, Chen C J 2002 J. Colloid Interface Sci. 248 176

    [8]

    Yang C, Li D, Masliyah J H 1998 Int. J. Heat Mass Transfer 41 4229

    [9]

    Arulanandam S, Li D 2000 Colloids Surf. A: Physicochem. Eng. Aspects 161 89

    [10]

    Bianchi F, Ferrigno R, Girault H H 2000 Anal. Chem. 72 1987

    [11]

    Wang C Y, Liu Y H, Chang C C 2008 Phys. Fluids 20 063105

    [12]

    Dutta P, Beskok A 2001 Anal. Chem. 73 5097

    [13]

    Keh H J, Tseng H C 2001 J. Colloid Interface Sci. 242 450

    [14]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

    [15]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [16]

    Chakraborty S, Ray S 2008 Phys. Fluids 20 083602

    [17]

    Chakraborty S, Srivastava A K 2007 Langmuir 23 12421

    [18]

    Qu W L, Li D Q 2000 J. Colloid Interface Sci. 224 397

    [19]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [20]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [21]

    Chakraborty S 2007 Anal. Chim. Acta 605 175

    [22]

    Zhao C, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503

    [23]

    Vasu N, De S 2010 Colloids and Surfaces A: Physicochem. Eng. Aspects 368 44

    [24]

    Zhao C, Yang C 2010 Electrophoresis 31 973

    [25]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian fluid Mech. 157 133

    [26]

    Wang R J, Lin J Z, Li Z H 2005 Binmedical Microdevices 7 131

    [27]

    Zhang K, Lin J Z, Li Z H 2006 Appl. Math. Mech. ( English Edition) 27 575

    [28]

    Lin J Z, Zhang K, Li H J 2006 Chin. Phys. 15 2688

    [29]

    Liu Q S, Jian Y J, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 478

    [30]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 1304

    [31]

    Jian Y J, Liu Q S, Duan H Z, Chang L, Yang L G 2011 The Sixth International Conference on Fluid Mechanics (ICFM6), Guang Zhou, June 30-July 3, p616

    [32]

    Bird R B, Stewart W E, Lightfoot E N 2001 Transport phenomena, Second Edition (New York: Wiley-Interscience Publication) p242

    [33]

    Gong L, Wu J, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [34]

    Goswami P, Chakraborty S 2009 Langmuir 26 581

  • [1]

    Stone H A, Stroock A D, Ajdari A 2004 Ann. Rev. Fluid Mech. 36 381

    [2]

    Bayraktar T, Pidugu S B 2006 Int. J. Heat Mass Transfer 49 815

    [3]

    Burgreen D, Nakache F R 1964 J. Phys. Chem. 68 1084

    [4]

    Levine S, Marriott J R, Neale G, Epstein N 1975 J. Colloid Interface Sci. 52 136

    [5]

    Tsao H K 2000 J. Colloid Interface Sci. 225 247

    [6]

    Kang Y J, Yang C, Huang X Y 2002 J. Colloid Interface Sci. 253 285

    [7]

    Hsu J P, Kao C Y, Tseng S J, Chen C J 2002 J. Colloid Interface Sci. 248 176

    [8]

    Yang C, Li D, Masliyah J H 1998 Int. J. Heat Mass Transfer 41 4229

    [9]

    Arulanandam S, Li D 2000 Colloids Surf. A: Physicochem. Eng. Aspects 161 89

    [10]

    Bianchi F, Ferrigno R, Girault H H 2000 Anal. Chem. 72 1987

    [11]

    Wang C Y, Liu Y H, Chang C C 2008 Phys. Fluids 20 063105

    [12]

    Dutta P, Beskok A 2001 Anal. Chem. 73 5097

    [13]

    Keh H J, Tseng H C 2001 J. Colloid Interface Sci. 242 450

    [14]

    Kang Y J, Yang C, Huang X Y 2002 Int. J. Eng. Sci. 40 2203

    [15]

    Wang X M, Chen B, Wu J K 2007 Phys. Fluids 19 127101

    [16]

    Chakraborty S, Ray S 2008 Phys. Fluids 20 083602

    [17]

    Chakraborty S, Srivastava A K 2007 Langmuir 23 12421

    [18]

    Qu W L, Li D Q 2000 J. Colloid Interface Sci. 224 397

    [19]

    Jian Y J, Yang L G, Liu Q S 2010 Phys. Fluids 22 042001

    [20]

    Das S, Chakraborty S 2006 Anal. Chim. Acta 559 15

    [21]

    Chakraborty S 2007 Anal. Chim. Acta 605 175

    [22]

    Zhao C, Zholkovskij E, Masliyah J H, Yang C 2008 J. Colloid Interface Sci. 326 503

    [23]

    Vasu N, De S 2010 Colloids and Surfaces A: Physicochem. Eng. Aspects 368 44

    [24]

    Zhao C, Yang C 2010 Electrophoresis 31 973

    [25]

    Tang G H, Li X F, He Y L, Tao W Q 2009 J. Non-Newtonian fluid Mech. 157 133

    [26]

    Wang R J, Lin J Z, Li Z H 2005 Binmedical Microdevices 7 131

    [27]

    Zhang K, Lin J Z, Li Z H 2006 Appl. Math. Mech. ( English Edition) 27 575

    [28]

    Lin J Z, Zhang K, Li H J 2006 Chin. Phys. 15 2688

    [29]

    Liu Q S, Jian Y J, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 478

    [30]

    Jian Y J, Liu Q S, Yang L G 2011 J. Non-Newtonian fluid Mech. 166 1304

    [31]

    Jian Y J, Liu Q S, Duan H Z, Chang L, Yang L G 2011 The Sixth International Conference on Fluid Mechanics (ICFM6), Guang Zhou, June 30-July 3, p616

    [32]

    Bird R B, Stewart W E, Lightfoot E N 2001 Transport phenomena, Second Edition (New York: Wiley-Interscience Publication) p242

    [33]

    Gong L, Wu J, Wang L, Cao K 2008 Phys. Fluids 20 063603

    [34]

    Goswami P, Chakraborty S 2009 Langmuir 26 581

  • [1] Sun Zong-Li, Kang Yan-Shuang, Zhang Jun-Xia. Volume viscosity of inhomogeneous fluids: a Maxwell relaxation model. Acta Physica Sinica, 2024, 73(6): 066601. doi: 10.7498/aps.73.20231459
    [2] Zhang Tian-Ge, Ren Mei-Rong, Cui Ji-Feng, Chen Xiao-Gang, Wang Yi-Dan. Rotational electroosmotic slip flow of power-law fluid at high zeta potential in variable-section microchannel. Acta Physica Sinica, 2022, 71(13): 134701. doi: 10.7498/aps.71.20212327
    [3] Ai Jin-Fang, Xie Jun, Hu Guo-Hui. Numerical simulation of red blood cells deformation in microchannel under zero-net-mass-flux jet. Acta Physica Sinica, 2020, 69(23): 234701. doi: 10.7498/aps.69.20200971
    [4] Wang Chao, Chen Ying-Cai, Zhou Yan-Li, Luo Meng-Bo. Diffusion of diblock copolymer in periodical channels:a Monte Carlo simulation study. Acta Physica Sinica, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [5] Jiang Yu-Ting, Qi Hai-Tao. Electro-osmotic slip flow of Eyring fluid in a slit microchannel. Acta Physica Sinica, 2015, 64(17): 174702. doi: 10.7498/aps.64.174702
    [6] Wang Xiao-Na, Geng Xing-Guo, Zang Du-Yang. Drag-reduction of one-dimensional period and puasiperiod groove structures. Acta Physica Sinica, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [7] Liu Quan-Sheng, Yang Lian-Gui, Su Jie. Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates. Acta Physica Sinica, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [8] Quan Jun, Liu Yi-Xing, Yu Ya-Bin. Dynamic response of the coherent parallel-plate capacitor to the external field. Acta Physica Sinica, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [9] Cui Zhi-Wen, Liu Jin-Xia, Wang Chun-Xia, Wang Ke-Xie. Elastic waves in Maxwell fluid-saturated porous media with the squirt flow mechanism. Acta Physica Sinica, 2010, 59(12): 8655-8661. doi: 10.7498/aps.59.8655
    [10] Meng Qing-Miao, Jiang Ji-Jian, Liu Jing-Lun, Deng De-Li. The generalized Stefan-Boltzmann’s law of Dilaton-Maxwell non-stationary black hole. Acta Physica Sinica, 2009, 58(1): 78-82. doi: 10.7498/aps.58.78
    [11] Xie Guo-Feng. Improving parallel electrode method by sputtering atoms' angle distribution rule. Acta Physica Sinica, 2008, 57(3): 1784-1787. doi: 10.7498/aps.57.1784
    [12] Ge Hong, Zhang Xiao-Dan, Yue Qiang, Zhao Jing, Zhao Ying. Study of space voltage distribution between large-area parallel-plate electrodes for very high frequency plasma enhanced chemical vapor deposition. Acta Physica Sinica, 2008, 57(8): 5105-5110. doi: 10.7498/aps.57.5105
    [13] Hao Peng-Fei, Yao Zhao-Hui, He Feng. Experimental study of flow characteristics in rough microchannels. Acta Physica Sinica, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [14] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Ion extraction and collection studied by parallel electrode method on considerin g sputtering loss. Acta Physica Sinica, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [15] Song Xiao-Peng, Chen Rong, Bao Cheng-Yu, Wang De-Wu. Dual extraction and collection of ions by parallel electrode method. Acta Physica Sinica, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [16] Ding Ying-Tao, He Feng, Yao Zhao-Hui, Shen Meng-Yu, Wang Xue-Fang. Sonic point position and critical pressure ratio in non-uniform microchannels. Acta Physica Sinica, 2004, 53(7): 2050-2055. doi: 10.7498/aps.53.2050
    [17] Bai Zhan-Wu. Casimir effect of the Maxwell-Chern-Simons field for two non-parallel lines boundary. Acta Physica Sinica, 2004, 53(8): 2472-2477. doi: 10.7498/aps.53.2472
    [18] WANG KAI-GE, WANG YU-LONG, SUN YIN-GUAN. APPLICATION OF CENTRE MANIFOLD THEORY IN GENERALIZED MAXWELL-BLOCH LASER EQUATIONS. Acta Physica Sinica, 1996, 45(1): 46-51. doi: 10.7498/aps.45.46
    [19] CHEN JIN-YU, DING E-JIANG. WETTING TRANSITIONS OF A SIMPLE FLUID CONFINED BETWEEN DIFFERENT PARALLEL WALLS. Acta Physica Sinica, 1993, 42(8): 1278-1289. doi: 10.7498/aps.42.1278
    [20] FU XIU-JUN, GUO ZI-ZHENG, ZHOU PEI-QIN, LIU YOU-YAN. SPECTRAL PROPERTIES OF THE GENERALIZED FIBONACCI QUASIPERIODIC CHAINS. Acta Physica Sinica, 1992, 41(8): 1330-1337. doi: 10.7498/aps.41.1330
Metrics
  • Abstract views:  6432
  • PDF Downloads:  610
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2011
  • Accepted Date:  10 October 2011
  • Published Online:  05 June 2012

/

返回文章
返回