Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical studies of unsteady ignition of pulverized magnesium particle cloud

Yang Jin-Zhao Xia Zhi-Xun Hu Jian-Xin

Citation:

Numerical studies of unsteady ignition of pulverized magnesium particle cloud

Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A one-dimensional unsteady magnesium particle cloud ignition model with finite influencing sphere is established. The behavior of ignition of magnesium particle cloud is numerically simulated. The result shows that when the reaction is speeded up on the surface of magnesium particle, the temperature of the particle phase rises rapidly up to ignition temperature, while the surrounding air is much slower in temperature rising than particles; the gas temperature rising is unconspicuous in the whole sphere in the ignition process, albeit it is significant near the particle surface. The effects of the interior parameters and the environmental parameters on the ignition of the magnesium particle cloud are analyzed. With the increase of particle concentration, the particle cloud becomes easier to be ignited, and reduction in its ignition time delay can be seen. However, when the particle concentration has increased to some specific extent and its further increase will be adverse to the ignition of the particle cloud. The influence of the environmental pressure on the ignition of particle cloud is insignificant, and the ignition performance of the particle cloud almost keeps constant in a range of 1-5 atm. The oxygen concentration in the gas phase also has a weak effect on the ignition performance of particle cloud, but when the oxygen concentration is very low, the effect will significantly increase. The particle size, the initial temperature of the gas/particle and the radiant source have all great influences on the ignition performance of the particle cloud. Small particle and high temperature are helpful for speeding up the ignition process. The tendency obtained by numerical simulation coincides well with that of the experimental results from the literature.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51006118).
    [1]

    Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol. 30 474 (in Chinese) [申慧君, 夏智勋,胡建新,罗振兵 2007 固体火箭技术 30 474]

    [2]

    Liu X Z, Yu S Z, Li C J 2007 The Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲,于守志,李存杰 2007 飞航导弹动力装置(下) (北京:中国宇航出版社)第284页]

    [3]

    Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]

    [4]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221

    [5]

    Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust. Flame 129 392

    [6]

    Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA J. 17 1234

    [7]

    Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion Haifa, Israel, August 8-13, 1982 p971

    [8]

    Bellan J, Cuffel R 1983 Combust. Flame 51 55

    [9]

    Zhang J, Zhang Z H 2004 Magnesium Alloy and Applications (Beijing: Chemical Industry Press) p8 (in Chinese) [张津, 章宗和 2004 镁合金及应用 (北京:化学工业出版社) 第8页]

    [10]

    Ezhovskii G K, Ozerov E S 1978 Combust. Explo. Shock Waves 13 716

    [11]

    Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion. Explosio. Shock Waves 13 475

    [12]

    Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technol. 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]

    [13]

    Chen P, Zhang M X 2002 Special Casting and Nonferrous Alloys-2002 Year Die-Casting Special Issue 323 [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]

    [14]

    Elkotb M M, Salama N, Nassef I 1996 Twenty-Sixth Symposium (International) on Combustion Napoli, Italy, July 28-August 2, 1996 p1937

    [15]

    Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383

    [16]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [17]

    Yang C H 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)[杨成虎 2008 博士学位论文(杭州: 浙江大学)]

    [18]

    Cassel H M, Liebman I 1959 Combust. Flame 3 467

  • [1]

    Shen H J, Xia Z X, Hu J X, Luo Z B 2007 J. Solid Rocket Technol. 30 474 (in Chinese) [申慧君, 夏智勋,胡建新,罗振兵 2007 固体火箭技术 30 474]

    [2]

    Liu X Z, Yu S Z, Li C J 2007 The Power System of Cruise Missile (Vol. 2) (Beijing: China Astronautics Publishing House) p284 (in Chinese) [刘兴洲,于守志,李存杰 2007 飞航导弹动力装置(下) (北京:中国宇航出版社)第284页]

    [3]

    Cen K F, Yao Q, Luo Z Y, Li X T 2002 Advanced Combustion Theory (Hangzhou: Zhejiang University Press) p329 (in Chinese) [岑可法, 姚强, 骆仲泱, 李绚天 2002 高等燃烧学 (杭州: 浙江大学出版社) 第329页]

    [4]

    Annamalai K, Ryan W 1992 Prog. Energy Combust. Sci. 18 221

    [5]

    Nagata H, Kudo I, Ken'ichi, Nakamura S, Takeshita Y 2002 Combust. Flame 129 392

    [6]

    Brzustowski T A, Twardus E M, Wojcicki S, Sobiesiak A 1979 AIAA J. 17 1234

    [7]

    Chiu H H, Kim H Y, Croke E J 1982 Nineteenth Symposium (International) on Combustion Haifa, Israel, August 8-13, 1982 p971

    [8]

    Bellan J, Cuffel R 1983 Combust. Flame 51 55

    [9]

    Zhang J, Zhang Z H 2004 Magnesium Alloy and Applications (Beijing: Chemical Industry Press) p8 (in Chinese) [张津, 章宗和 2004 镁合金及应用 (北京:化学工业出版社) 第8页]

    [10]

    Ezhovskii G K, Ozerov E S 1978 Combust. Explo. Shock Waves 13 716

    [11]

    Breiter A L, Mal'tsev V M, Popov E I 1978 Combustion. Explosio. Shock Waves 13 475

    [12]

    Fan J F, Yang G C, Zhou Y H, Xu J, Zhang Z F, Shi L K 2006 Foundry Technol. 27 605 (in Chinese) [樊建锋, 杨根仓, 周尧和, 徐骏, 张志峰, 石力开 2006 铸造技术 27 605]

    [13]

    Chen P, Zhang M X 2002 Special Casting and Nonferrous Alloys-2002 Year Die-Casting Special Issue 323 [陈萍, 张茂勋 2002 特种铸造及有色合金-2002年压铸专刊 323]

    [14]

    Elkotb M M, Salama N, Nassef I 1996 Twenty-Sixth Symposium (International) on Combustion Napoli, Italy, July 28-August 2, 1996 p1937

    [15]

    Annamalai K, Ryan W 1993 Prog. Energy Combust. Sci. 19 383

    [16]

    Roberts T A, Burton R L, Krier H 1993 Combust. Flame 92 125

    [17]

    Yang C H 2008 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)[杨成虎 2008 博士学位论文(杭州: 浙江大学)]

    [18]

    Cassel H M, Liebman I 1959 Combust. Flame 3 467

  • [1] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Chen Bin-Bin. Numerical investigation of one-dimensional unsteady detonation wave characteristics of magnesium particle-air mixture. Acta Physica Sinica, 2020, 69(19): 194701. doi: 10.7498/aps.69.20200549
    [3] Yang Jian-Gang, Hu Chun-Bo, Zhu Xiao-Fei, Li Yue, Hu Xu, Deng Zhe. Experiment study of characteristics of powder pneumatic filling. Acta Physica Sinica, 2020, 69(4): 048102. doi: 10.7498/aps.69.20191273
    [4] Liu Long, Xia Zhi-Xun, Huang Li-Ya, Ma Li-Kun, Na Xu-Dong. Numerical investigation of one-dimensional steady detonation wave characteristics for magnesium particle-air mixture. Acta Physica Sinica, 2019, 68(24): 244701. doi: 10.7498/aps.68.20190974
    [5] Wang Yue, Li Wei-Feng, Shi Zhe-Hang, Liu Hai-Feng, Wang Fu-Chen. Characteristics of granular sheet of dense granular jet oblique impact. Acta Physica Sinica, 2018, 67(10): 104501. doi: 10.7498/aps.67.20172092
    [6] Jiang Yi-Min, Liu Mario. A thermodynamic model of grain-grain contact force. Acta Physica Sinica, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [7] Zhao Xin-Wen, Li Xin-Zhu, Zhang Hang, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Kang Qiang, Huang Jin, Wu Qiang. Dynamical behaviors of Sn micro-sphere particles under shock wave action. Acta Physica Sinica, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [8] Chen Fu-Zhen, Qiang Hong-Fu, Miao Gang, Gao Wei-Ran. Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2015, 64(11): 110202. doi: 10.7498/aps.64.110202
    [9] Sun Qi-Cheng, Liu Chuan-Qi, Gordon G D Zhou. Relaxation of granular elasticity. Acta Physica Sinica, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [10] Yang Chen, Fang Chao, Zhang Jian, Cao Jian-Zhu. Study on cumulative fractional release of radionuclides in HTGR fuel particles. Acta Physica Sinica, 2014, 63(3): 032802. doi: 10.7498/aps.63.032802
    [11] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [12] Zhu Li, Liu Shang-He, Zheng Hui-Zhi, Wei Ming, Hu Xiao-Feng, Sorokin Andrey. Modeling and experimental study of the mechanism of electrification from aero-engine jet. Acta Physica Sinica, 2013, 62(22): 225201. doi: 10.7498/aps.62.225201
    [13] Fang Chuan-Bo, Xia Zhi-Xun, Xiao Yun-Lei, Hu Jian-Xin, Liu Dao-Ping. Study of ignition process of boron particle with considering Stefan flow effects. Acta Physica Sinica, 2013, 62(16): 164702. doi: 10.7498/aps.62.164702
    [14] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of ignition and combustion of pulverized magnesium particle cloud. Acta Physica Sinica, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [15] Qian Zu-Wen. Viscosity coefficient in granular medium. Acta Physica Sinica, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [16] Fang Chao, Liu Ma-Lin. The study of the Raman spectra of SiC layers in TRISO particles. Acta Physica Sinica, 2012, 61(9): 097802. doi: 10.7498/aps.61.097802
    [17] Yang Juan, Bian Bao-Min, Peng Gang, Yan Zhen-Gang, Li Zhen-Hua. The statistical fractal characteristic of aerosol scattering pulse signal group. Acta Physica Sinica, 2010, 59(11): 7713-7718. doi: 10.7498/aps.59.7713
    [18] Yang Yi-Tao, Zhang Chong-Hong, Zhou Li-Hong, Li Bing-Sheng, Zhang Li-Qing. Synthesis of metallic nanoparticles in spinel via defects induced by the inert-gas-ion implantation. Acta Physica Sinica, 2009, 58(1): 399-403. doi: 10.7498/aps.58.399
    [19] Dai Bing, Luo Xiang-Dong, Wang Ya-Wei. Multiple light scattering of non-spherical particles with elliptical cross section. Acta Physica Sinica, 2009, 58(6): 3864-3869. doi: 10.7498/aps.58.3864
    [20] DU YOU-WEI, XU MINO-XIANG, WU JIAN, SHI YING-BING, LU HUAI-XIAN, XUE RONG-HUA. MAGNETIC PROPERTIES OF ULTRAFINE NICKEL PARTICLES. Acta Physica Sinica, 1992, 41(1): 149-154. doi: 10.7498/aps.41.149
Metrics
  • Abstract views:  4928
  • PDF Downloads:  428
  • Cited By: 0
Publishing process
  • Received Date:  03 March 2012
  • Accepted Date:  26 April 2012
  • Published Online:  05 August 2012

/

返回文章
返回