Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical and mechanical properties of a Cu-Cr-Zr alloy aged under an imposed DC current and static magnetic field

Rao Xian-Jun Zhong Yun-Bo Zhang Zeng-Guang Wang Zhi-Qiang Deng Kang Ren Zhong-Ming Xu Kuang-Di

Citation:

Electrical and mechanical properties of a Cu-Cr-Zr alloy aged under an imposed DC current and static magnetic field

Rao Xian-Jun, Zhong Yun-Bo, Zhang Zeng-Guang, Wang Zhi-Qiang, Deng Kang, Ren Zhong-Ming, Xu Kuang-Di
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, Cu-0.41wt.%Cr-0.21wt.%Zr alloy is subjected to an isochronal aging treatment with a DC electric current (100A/cm2) and a static magnetic field simultaneously imposed. The alloy in the form of plate with a thickness of 2 mm is solid-solution-treated and cold deformed with a total area reduction of more than 98% before aging. The results indicate that the conductivity and micro hardness of the sample are significantly improved by the imposed electric-magnetic field. The conductivity of the sample increases with magnetic flux density (MFD) improving, especially at a lower aging temperature (350 ℃), and a maximum improvement of 22.1% IACS in conductivity could be obtained with a 10 T magnetic field. For the property of micro hardness, it increases with MFD increasing at a lower aging temperature (350 ℃), while at a higher aging temperature, it first increases and then decreases with MFD increasing. The effects of the DC current and magnetic field on the microstructure of the alloy are investigated by transmission electron microscopy. A lower dislocation density and more Cr precipitation are observed under electric-magnetic couple field than under the DC current only. It indicates that the electric and magnetic fields enhance the aging process of Cu-Cr-Zr alloy distinctly. According to the experimental results, we believe that the main mechanism of the influence of electric and magnetic fields on the Cu-Cr-Zr alloy is that the magnetic field enhances the interaction between solute atoms, vacancies, dislocations and electron wind force, thereby intensifing the effect of the dc current.
    • Funds: Project supported by the National High-tech R&D Program of China (Grant No. 2009AA03Z109), the Key Research and Innovation Program from Shanghai Municipal Education Commission (Grant No. 09zz98), the Key Project from Science and Technology Commission of Shanghai Municipality (Grant Nos. 09dz1206401, 09dz1206402), and the Doctoral Program Foundation of Institutions of Higher Education of China (Grant No. 20093108110012).
    [1]

    Qiang L, Xiang Z, Yan G 2006 Metall. Mater. Trans. A 37 3233

    [2]

    Liu P, Kang B X, Cao G 1999 Mater. Sci. Eng. A 265 262

    [3]

    Vinogradov A, Patlan V, Suzuki Y 2003 Acta Mater. 50 1639

    [4]

    Henmi Z, Nagai T 1969 Trans. Jpn. Inst. Metals. 10 305

    [5]

    Tsuchiya K, Kawamura H 1996 J. Nucl. Mater. 233-237 913

    [6]

    Watanabe C, Monzen R, Tazaki K 2008 J. Mater. Sci. 43 813

    [7]

    Shimotomai M, Maruta K, Mine K, Matsui M 2003 Acta Mater. 51 2921

    [8]

    Peters C T, Miodownik A P 1973 Scripta Metall. 7 955

    [9]

    Martikainen H O, Lindroos V K, 1981 Scand. J. Metall. 10 3

    [10]

    Youdelis W V, Colton D R 1964 J. Canadian Journal of Physics 42 2217

    [11]

    Nakajima H, Maekawa S 1985 Japan Inst. Metals. 26 1

    [12]

    Liu W C 2006 Ma. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [刘万忱 2007 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Koppenaal T J, Simcoe C R 1963 Trans. Met. Soc. AIME. 227 615

    [14]

    Zhou Q, Yang Y, Tang J, Hu Z 2006 Acta Metall. Sin. 42 28

    [15]

    Conrd H, Karam N, Mannan S 1983 Scripta Mater. 17 411

    [16]

    Conrd H 2000 Mater. Sci. Eng. A 287 227

    [17]

    Wang Z Q, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Deng K 2009 J. Alloy Compd. 471 172

    [18]

    Wang Z Q, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Ren Z M. 2009 J. Alloy Compd. 479 303

    [19]

    Lou L, Zhong Y B, Ren Z M 2006 Chin J Nonferrous Met. 16 728 (in Chinese) [楼磊, 钟云波, 任忠鸣 2006 中国有色金属学报 16 728]

    [20]

    Suzuki H, Kanno M J 1972 Japan Inst. Metals. 36 363

  • [1]

    Qiang L, Xiang Z, Yan G 2006 Metall. Mater. Trans. A 37 3233

    [2]

    Liu P, Kang B X, Cao G 1999 Mater. Sci. Eng. A 265 262

    [3]

    Vinogradov A, Patlan V, Suzuki Y 2003 Acta Mater. 50 1639

    [4]

    Henmi Z, Nagai T 1969 Trans. Jpn. Inst. Metals. 10 305

    [5]

    Tsuchiya K, Kawamura H 1996 J. Nucl. Mater. 233-237 913

    [6]

    Watanabe C, Monzen R, Tazaki K 2008 J. Mater. Sci. 43 813

    [7]

    Shimotomai M, Maruta K, Mine K, Matsui M 2003 Acta Mater. 51 2921

    [8]

    Peters C T, Miodownik A P 1973 Scripta Metall. 7 955

    [9]

    Martikainen H O, Lindroos V K, 1981 Scand. J. Metall. 10 3

    [10]

    Youdelis W V, Colton D R 1964 J. Canadian Journal of Physics 42 2217

    [11]

    Nakajima H, Maekawa S 1985 Japan Inst. Metals. 26 1

    [12]

    Liu W C 2006 Ma. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese) [刘万忱 2007 硕士学位论文 (大连: 大连理工大学)]

    [13]

    Koppenaal T J, Simcoe C R 1963 Trans. Met. Soc. AIME. 227 615

    [14]

    Zhou Q, Yang Y, Tang J, Hu Z 2006 Acta Metall. Sin. 42 28

    [15]

    Conrd H, Karam N, Mannan S 1983 Scripta Mater. 17 411

    [16]

    Conrd H 2000 Mater. Sci. Eng. A 287 227

    [17]

    Wang Z Q, Zhong Y B, Lei Z S, Ren W L, Ren Z M, Deng K 2009 J. Alloy Compd. 471 172

    [18]

    Wang Z Q, Zhong Y B, Cao G H, Wang C, Wang J, Ren W L, Ren Z M. 2009 J. Alloy Compd. 479 303

    [19]

    Lou L, Zhong Y B, Ren Z M 2006 Chin J Nonferrous Met. 16 728 (in Chinese) [楼磊, 钟云波, 任忠鸣 2006 中国有色金属学报 16 728]

    [20]

    Suzuki H, Kanno M J 1972 Japan Inst. Metals. 36 363

Metrics
  • Abstract views:  8200
  • PDF Downloads:  502
  • Cited By: 0
Publishing process
  • Received Date:  21 April 2012
  • Accepted Date:  05 June 2012
  • Published Online:  05 November 2012

/

返回文章
返回