Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air

Liao Rui-Jin Wu Fei-Fei Liu Xing-Hua Yang Fan Yang Li-Jun Zhou Zhi Zhai Lei

Citation:

Numerical simulation of transient space charge distribution of DC positive corona discharge under atmospheric pressure air

Liao Rui-Jin, Wu Fei-Fei, Liu Xing-Hua, Yang Fan, Yang Li-Jun, Zhou Zhi, Zhai Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Corona discharges are usually generated at sharp points, edges or on thin wires where the electric field is strongly concentrated. With the rapid development of extra and ultra high-voltage transmission lines, the air corona discharge becomes one of the critical problems associated with high-voltage lines, which can lead to the deterioration of insulation systems, power loss, radio noise. Corona discharge studies have been undertaken for many years, not only because of the scientific interest in the corona mechanism but also because of its practical engineering importance. Transient space charge distribution effect that is one of the important canses in the process of corona discharge, is closely related to the corona discharge mechanism and onset, self-sustaining. In this paper, we present an improved self-consistent, multi-component and two-dimensional plasma hybrid model for simulating the DC positive corona discharge under atmospheric environment. The model is based on the plasma hydrodynamics and the chemical dynamics, and it includes 12 species and 27 reactions. Besides, the photoionization effect is also considered in the proposed model. The simulation and the experiment on bar-plate electrode configuration with an inter-electrode gap of 5.0 mm at 2-5.5 kV are carried out. The discharge voltage-current characteristics and single pulse waveform are in good agreement with the experimental measurements. Based on this model, the electric field distribution, the electron temperature distribution, and the evolution of charged species distribution are investigated in detail. The results show that distributions of electron temperature and electric field have the same patterns, In the process of discharge, electron density is kept at 1019 m-3 or so. O4+ is dominant compared with the other charged heavy species, and O2+ and N2+ play the key role in secondary electron emission: the unmbers of O2- and O are the largest in negative ions and neutral particle respectively, they play a negligible role in discharge process.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CB209401), the Fundamental Research Funds for the Central Universities (Grant No. CDJXS1215003), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021005).
    [1]

    Yang B C, Liu X B, Dai Y S 2002 High Voltage Engineering (Chongqing: Chongqing University Press) (in Chinese) [杨保初, 刘晓波, 戴玉松 2002 高电压技术 (重庆: 重庆大学出版社) ]

    [2]

    Liu Z Y 2005 Ultra-Hig Grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网 (北京: 中国经济出版社)]

    [3]

    Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [4]

    Zheng Y S He J L, Zhang B 2011 High Voltage Engineering 3 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 3 752]

    [5]

    Qiu C R, Wang N Q 1994 Electrical Equipment Partial Discharge and Testing Technology (Beijing: China Machine Press) (in Chinese) [邱昌容, 王乃庆 1994 电工设备局部放电及其测试技术 (北京: 机械工业出版社) ]

    [6]

    Bai X Y, Bai M D, Zhang Z T 2003 China Basic Science 6 30 (in Chinese) [白希尧, 白敏冬, 张芝涛 2003 中国基础科学 6 30]

    [7]

    Michael A L Allan J L 2007 Plasma Discharge Principle and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼, 阿伦 J 里登伯格 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]

    [8]

    Hu Q, Shu L C, Jiang X L 2010 High Voltage Engineering 36 1669 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 1669]

    [9]

    Liu Y P You S H, Lv F C 2010 High Voltage Engineering 36 2424 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 2424]

    [10]

    Davies A J, Davies C S, Evans C J 1971 Proc. Inst. Electrical Eng. 118 816

    [11]

    Passchier J D P Goedheer W J 1993 J. Appl. Phys. 73 1073

    [12]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [13]

    Lymberopoulos D P, Economou D J 1993 Appl. Phys. Lett. 63 2478

    [14]

    Bera K, Farouk B, Lee Y H 1998 JSME International Journal 41 132

    [15]

    Bera K, Farouk B, Lee Y H 1999 Plasma Sources Sci. Technol. 8 412

    [16]

    Bera K, Farouk B, Lee Y H 1999 J. Electrochem. Soc. 146 3264

    [17]

    Bera K, Farouk B, Vitello P 2001 J. Phys. D: Appl. Phys. 34 1479

    [18]

    Agostino R D, Favia P, Oehr C Wertheimer M R 2005 Plasma Processes and Polymers 2 7

    [19]

    Gordiets B F, Ferreira C M Guerra V L Loureiro J M A H Nahomy J 1995 IEEE Trans. Plasma Sci. 23 750

    [20]

    Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M 2010 J. Phys. D: Appl. Phys 107 093304

    [21]

    Zhang J, Adamiak K 2008 IEEE Trans. Ind. Appl. 44 494

    [22]

    Hagelaar G J M Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [23]

    Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497

    [24]

    Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614

    [25]

    Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [26]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240

    [27]

    Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)

    [28]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015

    [29]

    Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515

    [30]

    Xu X J, Zhu D C 1996 Air Discharge Physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理 (上海: 复旦大学出版社)]

    [31]

    Yao P L 1994 Plasma Physics (Beijing: Science Press) (in Chinese) [姚平录 1994 等离子体物理学 (北京: 科学出版社)]

    [32]

    Gordiets B F, Ferreira C M, Guerra V L, Louriero M 1995 IEEE Trans. Plasma Sci. 23 750

    [33]

    Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304

    [34]

    Liu X H, He W, Yang F, Xiao H G,Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]

    [35]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena Virginia USA, 2009 p559

    [36]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203

    [37]

    Li Q, Li H F, Sun X R, Zhang W Y, Wang H 2010 High Voltage Engineering 36 2739 (in Chinese) [李庆, 李海凤, 孙晓荣, 张文月, 王昊 2010 高电压技术 36 2739]

    [38]

    Arkhipenko V I, Zgirovskii S M, Kirillov A A, Simonchick L V 2002 Plasma Phys. Rep. 28 858

    [39]

    Marode E, Bastien F, Bakker M 1979 J. Appl. Phys. 50 140

    [40]

    Sigmond R S 1984 J. Appl. Phys. 56 1355

  • [1]

    Yang B C, Liu X B, Dai Y S 2002 High Voltage Engineering (Chongqing: Chongqing University Press) (in Chinese) [杨保初, 刘晓波, 戴玉松 2002 高电压技术 (重庆: 重庆大学出版社) ]

    [2]

    Liu Z Y 2005 Ultra-Hig Grid (Beijing: China Economic Publishig) (in Chinese) [刘振亚 2005 特高压电网 (北京: 中国经济出版社)]

    [3]

    Shu Y B, Hu Y 2007 Proceedings of the CSEE 27 1 (in Chinese) [舒印彪, 胡毅 2007 中国电机工程学报 27 1]

    [4]

    Zheng Y S He J L, Zhang B 2011 High Voltage Engineering 3 752 (in Chinese) [郑跃胜, 何金良, 张波 2011 高电压技术 3 752]

    [5]

    Qiu C R, Wang N Q 1994 Electrical Equipment Partial Discharge and Testing Technology (Beijing: China Machine Press) (in Chinese) [邱昌容, 王乃庆 1994 电工设备局部放电及其测试技术 (北京: 机械工业出版社) ]

    [6]

    Bai X Y, Bai M D, Zhang Z T 2003 China Basic Science 6 30 (in Chinese) [白希尧, 白敏冬, 张芝涛 2003 中国基础科学 6 30]

    [7]

    Michael A L Allan J L 2007 Plasma Discharge Principle and Materials Processing (Beijing: Science Press) (in Chinese) [迈克尔 A 力伯曼, 阿伦 J 里登伯格 2007 等离子体放电原理与材料处理 (北京: 科学出版社)]

    [8]

    Hu Q, Shu L C, Jiang X L 2010 High Voltage Engineering 36 1669 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 1669]

    [9]

    Liu Y P You S H, Lv F C 2010 High Voltage Engineering 36 2424 (in Chinese) [胡琴, 舒立春, 蒋兴良 2010 高电压技术 36 2424]

    [10]

    Davies A J, Davies C S, Evans C J 1971 Proc. Inst. Electrical Eng. 118 816

    [11]

    Passchier J D P Goedheer W J 1993 J. Appl. Phys. 73 1073

    [12]

    Lymberopoulos D P, Economou D J 1993 J. Appl. Phys. 73 3668

    [13]

    Lymberopoulos D P, Economou D J 1993 Appl. Phys. Lett. 63 2478

    [14]

    Bera K, Farouk B, Lee Y H 1998 JSME International Journal 41 132

    [15]

    Bera K, Farouk B, Lee Y H 1999 Plasma Sources Sci. Technol. 8 412

    [16]

    Bera K, Farouk B, Lee Y H 1999 J. Electrochem. Soc. 146 3264

    [17]

    Bera K, Farouk B, Vitello P 2001 J. Phys. D: Appl. Phys. 34 1479

    [18]

    Agostino R D, Favia P, Oehr C Wertheimer M R 2005 Plasma Processes and Polymers 2 7

    [19]

    Gordiets B F, Ferreira C M Guerra V L Loureiro J M A H Nahomy J 1995 IEEE Trans. Plasma Sci. 23 750

    [20]

    Nahomy J, Ferreira C M, Gordiets B, Pagnon D, Touzeau M,Vialle M 2010 J. Phys. D: Appl. Phys 107 093304

    [21]

    Zhang J, Adamiak K 2008 IEEE Trans. Ind. Appl. 44 494

    [22]

    Hagelaar G J M Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [23]

    Zheleznyak M D, Mnattskanyan A K 1977 Zhurnal Tekhnicheskoi Fiziki 47 2497

    [24]

    Yu V S, Larsson A, Gubanski S M, Akyuz M 2001 J. Phys. D: Appl. Phys. 34 614

    [25]

    Philip D N, Janzen A R, Aziz R A 1972 J. Chem. Phys. 57 1100

    [26]

    Brokaw R S 1969 Ind. Eng. Chem. Process Des. 8 240

    [27]

    Bird R B, Stewart W E, Lightfoot E N 1960 Transport Phenomena (Madison: Madison Press)

    [28]

    Farouk T, Farouk B, Gutsol A, Fridman A 2008 Plasma Sources Sci. Technol. 17 035015

    [29]

    Curtiss C F, Bird R B 1999 Ind. Eng. Chem. Res. 38 2515

    [30]

    Xu X J, Zhu D C 1996 Air Discharge Physical (Shanghai: Fudan University Press) (in Chinese) [徐学基, 诸定昌 1996 空气放电物理 (上海: 复旦大学出版社)]

    [31]

    Yao P L 1994 Plasma Physics (Beijing: Science Press) (in Chinese) [姚平录 1994 等离子体物理学 (北京: 科学出版社)]

    [32]

    Gordiets B F, Ferreira C M, Guerra V L, Louriero M 1995 IEEE Trans. Plasma Sci. 23 750

    [33]

    Mahadev S, Raja L L 2010 J. Appl. Phys. 107 093304

    [34]

    Liu X H, He W, Yang F, Xiao H G,Ma J 2011 High Voltage Engineering 37 1614 (in Chinese) [刘兴华, 何为, 杨帆, 肖汉光, 马俊 2011 高电压技术 37 1614]

    [35]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2009 IEEE Conf. on Electrical Insulation and Dielectric Phenomena Virginia USA, 2009 p559

    [36]

    Tran T N, Golosnoy I O, Lewin P L, Georghiou G E 2011 J. Phys. D: Appl. Phys. 44 015203

    [37]

    Li Q, Li H F, Sun X R, Zhang W Y, Wang H 2010 High Voltage Engineering 36 2739 (in Chinese) [李庆, 李海凤, 孙晓荣, 张文月, 王昊 2010 高电压技术 36 2739]

    [38]

    Arkhipenko V I, Zgirovskii S M, Kirillov A A, Simonchick L V 2002 Plasma Phys. Rep. 28 858

    [39]

    Marode E, Bastien F, Bakker M 1979 J. Appl. Phys. 50 140

    [40]

    Sigmond R S 1984 J. Appl. Phys. 56 1355

  • [1] Tong Lei, Zhao Ming-Liang, Zhang Yu-Ru, Song Yuan-Hong, Wang You-Nian. Hybrid simulation of radio frequency biased inductively coupled Ar/O2/Cl2 plasmas. Acta Physica Sinica, 2024, 73(4): 045201. doi: 10.7498/aps.73.20231369
    [2] Wang Zhen-Xing, Cao Zhi-Yuan, Li Rui, Chen Feng, Sun Li-Qiong, Geng Ying-San, Wang Jian-Hua. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field. Acta Physica Sinica, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [3] Zhao Da-Shuai, Sun Zhi, Sun Xing, Sun Huai-De, Han Bai. Micro gap air discharge based on fractal theory. Acta Physica Sinica, 2021, 70(20): 205207. doi: 10.7498/aps.70.20210362
    [4] Guo Rong- Rong, Lin Jin-Hai, Liu Li-Li, Li Shi-Wei, Wang Chen, Lin Hai-Jun. Effect of deep level defects on space charge distribution in CdZnTe crystals. Acta Physica Sinica, 2020, 69(22): 226103. doi: 10.7498/aps.69.20200553
    [5] Yuan Duan-Lei, Min Dao-Min, Huang Yin, Xie Dong-Ri, Wang Hai-Yan, Yang Fang, Zhu Zhi-Hao, Fei Xiang, Li Sheng-Tao. Influence of filler content on trap and space charge properties of epoxy resin nanocomposites. Acta Physica Sinica, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [6] Liu Kang-Lin, Liao Rui-Jin, Zhao Xue-Tong. Measurement of space charges in air based on sound pulse method. Acta Physica Sinica, 2015, 64(16): 164301. doi: 10.7498/aps.64.164301
    [7] Liu Yu-Feng, Ding Yan-Jun, Peng Zhi-Min, Huang Yu, Du Yan-Jun. Spectroscopic study on the time evolution behaviors of the laser-induced breakdown air plasma. Acta Physica Sinica, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [8] Wu Fei-Fei, Liao Rui-Jin, Yang Li-Jun, Liu Xing-Hua, Wang Ke, Zhou Zhi. Numerical simulation of Trichel pulse characteristics in bar-plate DC negative corona discharge. Acta Physica Sinica, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [9] Wang Jing, Ma Rui-Ling, Wang Long, Meng Jun-Min. Numerical simulation of the spread of internal waves see from deep sea to shallow sea from the mixed model. Acta Physica Sinica, 2012, 61(6): 064701. doi: 10.7498/aps.61.064701
    [10] Tu De-Min, Wang Xia, Lü Ze-Peng, Wu Kai, Peng Zong-Ren. Formation and inhibition mechanisms of space charges in direct current polyethylene insulation explained by energy band theory. Acta Physica Sinica, 2012, 61(1): 017104. doi: 10.7498/aps.61.017104
    [11] Chen Xuan, An Zhen-Lian, Liu Chen-Xia, Zhang Ye-Wen, Zheng Fei-Hu. Influence of surface fluorination temperature on space charge accumulation in polyethylene. Acta Physica Sinica, 2012, 61(13): 138201. doi: 10.7498/aps.61.138201
    [12] An Zhen-Lian, Liu Chen-Xia, Chen Xuan, Zheng Fei-Hu, Zhang Ye-Wen. Space charge in surface fluorinated polyethylene. Acta Physica Sinica, 2012, 61(9): 098201. doi: 10.7498/aps.61.098201
    [13] Liao Rui-Jin, Zhou Tian-Chun, George Chen, Yang Li-Jun. A space charge trapping model and its parameters in polymeric material. Acta Physica Sinica, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [14] Chen Xi, Wang Xia, Wu Kai, Peng Zong-Ren, Cheng Yong-Hong. Effect of temperature gradient on space charge waveform in pulsed electroacoustic method. Acta Physica Sinica, 2010, 59(10): 7327-7332. doi: 10.7498/aps.59.7327
    [15] Lü Xiao-Gui, Ren Chun-Sheng, Ma Teng-Cai, Zhu Hai-Long, Qian Mu-Yang, Wang De-Zhen. Influence of quartz tube on the nanosecond pulsed discharge in a cone-to-plane air gap. Acta Physica Sinica, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [16] Xiao Chun, Zhang Ye-Wen, Lin Jia-Qi, Zheng Fei-Hu, An Zhen-Lian, Lei Qing-Quan. Research of the recombination rate of space charge in LDPE film during the short-circuit discharge process via the photon counting method. Acta Physica Sinica, 2009, 58(9): 6459-6464. doi: 10.7498/aps.58.6459
    [17] Zhao Min, An Zhen-Lian, Yao Jun-Lan, Xie Chen, Xia Zhong-Fu. Trap capture properties of space charge and void breakdown charge in a cellular polypropylene electret film. Acta Physica Sinica, 2009, 58(1): 482-487. doi: 10.7498/aps.58.482
    [18] Yang Qiang, An Zhen-Lian, Zheng Fei-Hu, Zhang Ye-Wen. The relationship between energy distribution and space distribution of charge traps in linear low density polyethylene. Acta Physica Sinica, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [19] An Zhen-Lian, Yang Qiang, Zheng Fei-Hu, Zhang Ye-Wen. Space charges formed in the hot compression molding process of low density polyethylene. Acta Physica Sinica, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [20] Zheng Fei-Hu, Zhang Ye-Wen, Wu Chang-Shun, Li Ji-Xiao, Xia Zhong-Fu. Piezo-PWP and PEA methods for measuring space charge in solid dielectric. Acta Physica Sinica, 2003, 52(5): 1137-1142. doi: 10.7498/aps.52.1137
Metrics
  • Abstract views:  10733
  • PDF Downloads:  1371
  • Cited By: 0
Publishing process
  • Received Date:  11 June 2012
  • Accepted Date:  06 July 2012
  • Published Online:  05 December 2012

/

返回文章
返回