Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock-induced transformation behavior in NiTi shape memory alloy

Liu Hong-Tao Sun Guang-Ai Wang Yan-Dong Chen Bo Wang Xiao-Lin

Citation:

Shock-induced transformation behavior in NiTi shape memory alloy

Liu Hong-Tao, Sun Guang-Ai, Wang Yan-Dong, Chen Bo, Wang Xiao-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The high-strain dynamic behavior of NiTi shape memory alloy has significant applications in several fields such as military af- fairs, aerospace. In order to investigate the transformation behavior in NiTi alloy, induced by dynamic mechanics, the shock-loading experiments are performed using a single stage gas gun at different temperatures and different shock velocities. Differential scanning calorimeter (DSC) and comprehensive physical property measurement system are employed to analyze the phase transformation in- duced by residual effects of shock waves in NiTi alloy. Three endotherms are observed in the first heating cycle, showing the presence of three-step reverse phase transformation; whereas during the second heating only one endotherm is seen, because the other two en- dotherms attributed to stress-induced martensite have disappeared. The exothermic and endothermic peak, owing to the transformation of shock-treated specimens, become small and their transformation temperature regions are broadened. This tendency indicates that the internal defects in the specimens, introduced by shock-treated, increase the resistance of phase transformation. The exothermic peaks of specimens, shock-treated at low velocity and high velocity, all shift to the low-temperature-zone, because the dislocations increase the hindrance to martensitic transformation. However, the endothermic peaks of specimens with low velocity shock-treated shift to high-temperature-zone, illustrating that the reverse martensitic transformation is also opposed by dislocations; while the endothermic peaks shift to low-temperature-zone for high velocity shock-treated, due to the decrease of transformation energy, caused by the re-duction of recoverable martensite. A small shoulder is detected in exothermic peak, whose shape becomes sharper with shock rate increasing. This result reveals that the intermediate phase (R-phase) results in two-stage phase transformation. The electrical resistivity measurement result further confirms that the two types of phase transformations associated with austenite to rhombohedral (A→R) and rhombohedral to martensite (R→M) can occur at the same time in a certain temperature range.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51001024), the Science and Technology Foundation of Chinese Academy of Engineering Physics (Grant No. 2010A0103002), and the Science and Technology Innovation Fund of Institute of Nuclear Physics and Chemistry of Chinese Academy of Engineering Physics (Grant No. 2009CX01).
    [1]

    Elahinia M H, Hashemi M, Tabesh M, Bhaduri S B 2012 Prog. Mater. Sci. 57 911

    [2]

    Es-Souni M, Es-Souni M, Fischer-Brandies H 2005 Anal. Bioanal. Chem. 381 557

    [3]

    Li Q, Zeng Y J, Tang X Y 2010 Australas. Phys. Eng. Sci. Med. 33 129

    [4]

    Carroll M C, Somsen Ch, Eggeler G 2004 Scripta Mater. 50 187

    [5]

    Millett J C F, Bourne N K, GrayIII G T 2002 J. Appl. Phys. 92 3107

    [6]

    Matsumoto H, Kondo K, Dohi S, Sawaoka A 1987 J. Mater. Sci. 22 581

    [7]

    Xu X, Thadhani N 2001 Scripta Mater. 44 2477

    [8]

    Xu X, Thadhani N 2004 Mater. Sci. Eng. A 384 194

    [9]

    Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z 1992 J. Mater. Sci. Lett. 11 845

    [10]

    Han X, Zou W, Way R, Jin S, Zhang Z, Li T, Yang D 1997 J. Mater. Sci. Lett. 32 4723

    [11]

    Millett J C F, Bourne N K 2004 Mater. Sci. Eng. A 378 138

    [12]

    Meziere Y J E, Millett J C F 2006 J. Appl. Phys. 100 033513

    [13]

    Thakur A M, Thadhani N N, Schwarz R B 1997 Metall. Mater. Trans. A 28 1445

    [14]

    Escobar J C, Clifton R J, Yang S Y 2000 Shock Compression of Condensed Matter-1999 Woodbury, NY, American 1999 p267

    [15]

    Matsumoto H, Kondo K, Sawaoka A 1989 J. Jpn. Inst. Met. 53 134

    [16]

    Kuruta T, Matsumoto H, Abe H 2004 J. Alloys Compd. 381 158

    [17]

    Kuruta T, Matsumoto H, Sakamoto K, Abe H 2005 J. Alloys Compd. 400 92

    [18]

    Su P C, Wu S K 2004 Acta Mater. 52 1117

    [19]

    He X M, Rong L J 2004 Scripta Mater. 51 7

    [20]

    Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069

    [21]

    Uchil J, Mahesh K K, Ganesh Kumara K 2002 Physica B 324 419

    [22]

    Huang C M, Meichle M, Salamon M B, Wayman C M 1983 Phil. Mag. A 47 9

    [23]

    Olbricht J, Yawny A, Pelegrina J L, Dlouhy A, Eggeler G 2011 Metall. Mater. Trans. A 42A 2556

    [24]

    Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511

    [25]

    Yong M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [26]

    Khelfaoui F, Guénin G 2003 Mater. Sci. Eng. A 355 292

    [27]

    Michutta J, Carroll M C, Yawny A, Somsen Ch, Neuking K, Eggeler G 2004 Mater. Sci. Eng. A 378 152

    [28]

    Chang S H, Wu S K, Chang G H 2005 Scripta Mater. 52 1341

    [29]

    Shang S, Hokamoto K, Meyers M A 1992 J Mater. Sci. 27 5470

  • [1]

    Elahinia M H, Hashemi M, Tabesh M, Bhaduri S B 2012 Prog. Mater. Sci. 57 911

    [2]

    Es-Souni M, Es-Souni M, Fischer-Brandies H 2005 Anal. Bioanal. Chem. 381 557

    [3]

    Li Q, Zeng Y J, Tang X Y 2010 Australas. Phys. Eng. Sci. Med. 33 129

    [4]

    Carroll M C, Somsen Ch, Eggeler G 2004 Scripta Mater. 50 187

    [5]

    Millett J C F, Bourne N K, GrayIII G T 2002 J. Appl. Phys. 92 3107

    [6]

    Matsumoto H, Kondo K, Dohi S, Sawaoka A 1987 J. Mater. Sci. 22 581

    [7]

    Xu X, Thadhani N 2001 Scripta Mater. 44 2477

    [8]

    Xu X, Thadhani N 2004 Mater. Sci. Eng. A 384 194

    [9]

    Li T C, Qui Y B, Liu J T, Wang F T, Zhu M, Yang D Z 1992 J. Mater. Sci. Lett. 11 845

    [10]

    Han X, Zou W, Way R, Jin S, Zhang Z, Li T, Yang D 1997 J. Mater. Sci. Lett. 32 4723

    [11]

    Millett J C F, Bourne N K 2004 Mater. Sci. Eng. A 378 138

    [12]

    Meziere Y J E, Millett J C F 2006 J. Appl. Phys. 100 033513

    [13]

    Thakur A M, Thadhani N N, Schwarz R B 1997 Metall. Mater. Trans. A 28 1445

    [14]

    Escobar J C, Clifton R J, Yang S Y 2000 Shock Compression of Condensed Matter-1999 Woodbury, NY, American 1999 p267

    [15]

    Matsumoto H, Kondo K, Sawaoka A 1989 J. Jpn. Inst. Met. 53 134

    [16]

    Kuruta T, Matsumoto H, Abe H 2004 J. Alloys Compd. 381 158

    [17]

    Kuruta T, Matsumoto H, Sakamoto K, Abe H 2005 J. Alloys Compd. 400 92

    [18]

    Su P C, Wu S K 2004 Acta Mater. 52 1117

    [19]

    He X M, Rong L J 2004 Scripta Mater. 51 7

    [20]

    Liu H C, Wu S K, Chou T S 1991 Acta Metall. Mater. 39 2069

    [21]

    Uchil J, Mahesh K K, Ganesh Kumara K 2002 Physica B 324 419

    [22]

    Huang C M, Meichle M, Salamon M B, Wayman C M 1983 Phil. Mag. A 47 9

    [23]

    Olbricht J, Yawny A, Pelegrina J L, Dlouhy A, Eggeler G 2011 Metall. Mater. Trans. A 42A 2556

    [24]

    Otsuka K, Ren X 2005 Prog. Mater. Sci. 50 511

    [25]

    Yong M L, Wagner M F X, Frenzel J, Schmahl W W, Eggeler G 2010 Acta Mater. 58 2344

    [26]

    Khelfaoui F, Guénin G 2003 Mater. Sci. Eng. A 355 292

    [27]

    Michutta J, Carroll M C, Yawny A, Somsen Ch, Neuking K, Eggeler G 2004 Mater. Sci. Eng. A 378 152

    [28]

    Chang S H, Wu S K, Chang G H 2005 Scripta Mater. 52 1341

    [29]

    Shang S, Hokamoto K, Meyers M A 1992 J Mater. Sci. 27 5470

  • [1] Zhang Xue-Yang, Hu Wang-Yu, Dai Xiong-Ying. Influence of iron anisotropy on phase transition near grain boundary under shock. Acta Physica Sinica, 2024, 73(3): 036201. doi: 10.7498/aps.73.20231081
    [2] Ma Tong, Xie Hong-Xian. Formation mechanism of face-centered cubic phase in impact process of single crystal iron along [101] direction. Acta Physica Sinica, 2020, 69(13): 130202. doi: 10.7498/aps.69.20191877
    [3] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [4] Li Jun, Wu Qiang, Yu Ji-Dong, Tan Ye, Yao Song-Lin, Xue Tao, Jin Ke. Orientation effect of alpha-to-epsilon phase transformation in single-crystal iron. Acta Physica Sinica, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [5] Ren Guo-Wu, Zhang Shi-Wen, Fan Cheng, Chen Yong-Tao. Influence of prestress on shock behavior of polycrystalline iron via atomistic simulations. Acta Physica Sinica, 2016, 65(19): 196203. doi: 10.7498/aps.65.196203
    [6] Liu Hong-Tao, Sun Guang-Ai, Wang Yan-Dong, Chen Bo, Wang Xiao-Lin. Rate-dependences of deformation mechanisms in NiTi shape memory alloys. Acta Physica Sinica, 2013, 62(18): 186201. doi: 10.7498/aps.62.186201
    [7] Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun. Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading. Acta Physica Sinica, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [8] Pan Hao, Hu Xiao-Mian, Wu Zi-Hui, Dai Cheng-Da, Wu Qiang. Numerical study of shock-induced phase transformation of cerium under low pressure. Acta Physica Sinica, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [9] Wang Jun-Guo, Liu Fu-Sheng, Li Yong-Hong, Zhang Ming-Jian, Zhang Ning-Chao, Xue Xue-Dong. The structural transition of water at quartz/water interfaces under shock compression in phase region of liquid. Acta Physica Sinica, 2012, 61(19): 196201. doi: 10.7498/aps.61.196201
    [10] Shao Chen-Wei, Wang Zhen-Hua, Li Yan-Nan, Zhao Qian, Zhang Lin. Computational study on thermal stability of an AuCu249 alloy cluster on the atomic scale. Acta Physica Sinica, 2011, 60(8): 083602. doi: 10.7498/aps.60.083602
    [11] Li Yong-Hong, Liu Fu-Sheng, Cheng Xiao-Li, Zhang Ming-Jian, Xue Xue-Dong. Crystallization of water induced by fused quartz under shock compression. Acta Physica Sinica, 2011, 60(12): 126202. doi: 10.7498/aps.60.126202
    [12] Chen Yong-Tao, Tang Xiao-Jun, Li Qing-Zhong. Phase transition and influence of phase transitionon spall in α phase Fe-based alloy. Acta Physica Sinica, 2011, 60(4): 046401. doi: 10.7498/aps.60.046401
    [13] Xu Wen-Wu, Song Xiao-Yan, Li Er-Dong, Wei Jun, Li Ling-Mei. Phase configuration and stability in the nanocrystalline Sm-Co system. Acta Physica Sinica, 2009, 58(5): 3280-3286. doi: 10.7498/aps.58.3280
    [14] Li Yong-Hua, Liu Chang-Sheng, Meng Fan-Ling, Wang Yu-Ming, Zheng Wei-Tao. X-ray photoelectron spectroscopy analysis of the effect of thickness on the transformation temperature of NiTi alloy thin films. Acta Physica Sinica, 2009, 58(4): 2742-2745. doi: 10.7498/aps.58.2742
    [15] Shao Jian-Li, Qin Cheng-Sen, Wang Pei. Atomistic simulation of mechanical properties of martensitic transformation under dynamic compression. Acta Physica Sinica, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [16] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Study of nucleation of void-induced phase transformation under shock compression. Acta Physica Sinica, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [17] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] Cui Xin-Lin, Zhu Wen-Jun, Deng Xiao-Liang, Li Ying-Jun, He Hong-Liang. Molecular dynamic simulation of shock-induced phase transformation in single crystal iron with nano-void inclusion. Acta Physica Sinica, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [19] Gong Chang-Wei, Wang Yi-Nong, Yang Da-Zhi. Ab initio study of the martensitic transformation of NiTi shape memory alloys. Acta Physica Sinica, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [20] Liu Hong, Wang Hui. Phase transition in biaxial nematic liquid crystal. Acta Physica Sinica, 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
Metrics
  • Abstract views:  5331
  • PDF Downloads:  674
  • Cited By: 0
Publishing process
  • Received Date:  19 June 2012
  • Accepted Date:  23 July 2012
  • Published Online:  05 January 2013

/

返回文章
返回