Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics

Liang Shan-Yong Wang Jiang-An Zong Si-Guang Wu Rong-Hua Ma Zhi-Guo Wang Xiao-Yu Wang Le-Dong

Citation:

Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics

Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is the research foundation of ship wake detection by laser and new-generation optical homing torpedo to investigate the influence of multiple scattering effect on light scattering intensity and polarization characteristics of the ship wake bubbles. The simulation model of laser back-scattering detection by ship wake bubbles is based on vector Monte Carlo method, and the multiple scattering mechanism is studied. The influences of multiple scattering effect and the bubble density in ship wake on the light scattering intensity and polarization characteristics of echo signal are analyzed. The echo photon polarization contribution reception method and the echo signal polarization statistical method are proposed to solve the problem that the low photon return probability cannot form the echo energy in the system with small receiver field of view. These methods are based on the basic idea of the particle collision importance sampling and the traditional energy receiving method. The polarization detection experimental platform for the simulated wake bubbles is built and the accuracy of the simulation results is verified in experiment. The consistence of the experimental and simulation results shows that the bubble distance and density information can be characterized by echo intensity, polarization information and the echo signal intensity, and the polarization characteristics can be used to detect and distinguish the ship wake bubbles, or even a low density wake bubbles with high precision.
    • Funds: Project supported by the Advanced Research Program of Weapon Equipment, China (Grant No. 9140A26030110JB11) and the National Natural Science Foundation of China (Grant No. 51109217).
    [1]

    Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83

    [2]

    Ulloa O, Sathyendranath S, Platt T 1994 Appl. Opt. 33 7070

    [3]

    Zhang X D, Lewis M, Johnson B 1998 Appl. Opt. 37 6525

    [4]

    Qiu H H 2003 J. Opt. Soc. Am. A 20 690

    [5]

    Kokhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47

    [6]

    Zhang X D, Marlon L. 2002 Limnology and Oceanography 47 1273

    [7]

    Zhang J S 2001 Ph.D. Dissertation (Xi'an: Chinese Academy of Sciences, Xi'an Institute of Optics and Fine Mechanics) (in Chinese) [张建生 2001 博士学位论文 (西安:中国科学院西安光学精密机械研究所)]

    [8]

    Shi S W, Wang J A, Jiang X Z, Ma Z G, Yu Y 2008 Acta Opt. Sin. 28 1861 (in Chinese) [石晟玮, 王江安, 蒋兴舟, 马治国, 余扬 2008 光学学报 28 1861]

    [9]

    Liang S Y, Wang J A, Zhang F, Shi S W, Ma Z G, Liu T, Wang Y H 2012 Acta Phys. Sin. 61 110701 (in Chinese) [梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹 2012 物理学报 61 110701]

    [10]

    Kokhanovsky A A 2003 Appl. Opt. 5 47

    [11]

    Wang C P, Qu H M, Chen Q 2007 Optoelect. Technol. 27 44 (in Chinese) [王春平, 屈惠明, 陈钱 2007 光电子技术 27 44]

    [12]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420

    [13]

    Wang L, Xu Z H, Feng H J 2005 Acta Phys. Sin. 54 2694 (in Chinese) [王凌, 徐之海, 冯华君 2005 物理学报 54 2694]

    [14]

    Su H M, Zheng X G, Wang X, Xu J F, Wang H Z 2002 Acta Phys. Sin. 51 1044 (in Chinese) [苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲 2002 物理学报 51 1044]

    [15]

    Wang M G, Li T J, Jian S S 2003 Acta Phys. Sin. 52 2818 (in Chinese) [王目光, 李唐军, 简水生 2003 物理学报 52 2818]

    [16]

    Zhang Q D, Li Y D, Deng X J 2011 Acta Phys. Sin. 60 084216 (in Chinese) [张启兴, 李耀东, 邓小玖 2011 物理学报 60 084216]

    [17]

    Zhao T F, Ke X Z 2012 Acta Phys. Sin. 61 114208 (in Chinese) [赵太飞, 柯熙政 2012 物理学报 61 114208]

    [18]

    Takano Y, Liou K N 2010 Appl. Opt. 49 3990

    [19]

    Yang P, Wei H, Kattawar G W, Hu Y X, Winker D M, Hostetler C A, Baum B A 2003 Appl. Opt. 42 4389

  • [1]

    Stanic S, Caruthers J W, Goodman R R, Kennedy E, Brown R A 2009 IEEE J. Oceanic Eng. 34 83

    [2]

    Ulloa O, Sathyendranath S, Platt T 1994 Appl. Opt. 33 7070

    [3]

    Zhang X D, Lewis M, Johnson B 1998 Appl. Opt. 37 6525

    [4]

    Qiu H H 2003 J. Opt. Soc. Am. A 20 690

    [5]

    Kokhanovsky A A 2003 J. Opt. A: Pure Appl. Opt. 5 47

    [6]

    Zhang X D, Marlon L. 2002 Limnology and Oceanography 47 1273

    [7]

    Zhang J S 2001 Ph.D. Dissertation (Xi'an: Chinese Academy of Sciences, Xi'an Institute of Optics and Fine Mechanics) (in Chinese) [张建生 2001 博士学位论文 (西安:中国科学院西安光学精密机械研究所)]

    [8]

    Shi S W, Wang J A, Jiang X Z, Ma Z G, Yu Y 2008 Acta Opt. Sin. 28 1861 (in Chinese) [石晟玮, 王江安, 蒋兴舟, 马治国, 余扬 2008 光学学报 28 1861]

    [9]

    Liang S Y, Wang J A, Zhang F, Shi S W, Ma Z G, Liu T, Wang Y H 2012 Acta Phys. Sin. 61 110701 (in Chinese) [梁善勇, 王江安, 张峰, 石晟玮, 马治国, 刘涛, 王雨虹 2012 物理学报 61 110701]

    [10]

    Kokhanovsky A A 2003 Appl. Opt. 5 47

    [11]

    Wang C P, Qu H M, Chen Q 2007 Optoelect. Technol. 27 44 (in Chinese) [王春平, 屈惠明, 陈钱 2007 光电子技术 27 44]

    [12]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420

    [13]

    Wang L, Xu Z H, Feng H J 2005 Acta Phys. Sin. 54 2694 (in Chinese) [王凌, 徐之海, 冯华君 2005 物理学报 54 2694]

    [14]

    Su H M, Zheng X G, Wang X, Xu J F, Wang H Z 2002 Acta Phys. Sin. 51 1044 (in Chinese) [苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲 2002 物理学报 51 1044]

    [15]

    Wang M G, Li T J, Jian S S 2003 Acta Phys. Sin. 52 2818 (in Chinese) [王目光, 李唐军, 简水生 2003 物理学报 52 2818]

    [16]

    Zhang Q D, Li Y D, Deng X J 2011 Acta Phys. Sin. 60 084216 (in Chinese) [张启兴, 李耀东, 邓小玖 2011 物理学报 60 084216]

    [17]

    Zhao T F, Ke X Z 2012 Acta Phys. Sin. 61 114208 (in Chinese) [赵太飞, 柯熙政 2012 物理学报 61 114208]

    [18]

    Takano Y, Liou K N 2010 Appl. Opt. 49 3990

    [19]

    Yang P, Wei H, Kattawar G W, Hu Y X, Winker D M, Hostetler C A, Baum B A 2003 Appl. Opt. 42 4389

  • [1] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [2] Zhao Chang, Ji Xian-Bing, Yang Yu-Hao, Meng Yu-Hang, Xu Jin-Liang, Peng Jia-Lue. Behavior characteristics of Janus particles impacting bubbles. Acta Physica Sinica, 2022, 71(21): 214701. doi: 10.7498/aps.71.20220632
    [3] Wang Hong-Xia, Zhang Qing-Hua, Hou Wei-Jun, Wei Yi-Wei. Analysis of terahertz wave attenuated by sand and dust storms with different modes. Acta Physica Sinica, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [4] Sun Xue-Ying, Liu Fei, Duan Jing-Bo, Niu Geng-Tian, Shao Xiao-Peng. Broadband scattering imaging technology based on common-mode rejection of polarization characteristic. Acta Physica Sinica, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [5] Yang Rui-Ke, Li Qian-Qian, Yao Rong-Hui. Multiple scattering and attenuation for electromagnetic wave propagation in sand and dust atmosphere. Acta Physica Sinica, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [6] Hu Shuai, Gao Tai-Chang, Li Hao, Liu Lei, Cheng Tian-Ji, Zhang Ting. Influence of atmospheric refraction on radiative transfer at visible light band. Acta Physica Sinica, 2015, 64(18): 184203. doi: 10.7498/aps.64.184203
    [7] Hu Shuai, Gao Tai-Chang, Liu Lei, Yi Hong-Liang, Ben Xun. Simulation of radiation transfer properties of polarized light in non-spherical aerosol using Monte Carlo method. Acta Physica Sinica, 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [8] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Wu Chao. Experimental research on bubble dynamics near circular hole of plate. Acta Physica Sinica, 2013, 62(6): 064703. doi: 10.7498/aps.62.064703
    [9] Zhang A-Man, Xiao Wei, Wang Shi-Ping, Cheng Xiao-Ou. Experimental study of the interactions between a pulsating bubble and sand particles with different diameters. Acta Physica Sinica, 2013, 62(1): 014703. doi: 10.7498/aps.62.014703
    [10] Jiao Xue-Jing, Ouyang Fang-Ping, Peng Sheng-Lin, Li Jian-Ping, Duan Ji-An, Hu You-Wang. Formation of all carbon heterojunction: through the docking of carbon nanotubes. Acta Physica Sinica, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [11] Liang Shan-Yong, Wang Jiang-An, Zhang Feng, Wu Rong-Hua, Zong Si-Guang, Wang Yu-Hong, Wang Le-Dong. Monte Carlo model and variance reduction method based on lidar of ship wake. Acta Physica Sinica, 2013, 62(1): 015205. doi: 10.7498/aps.62.015205
    [12] Wu Wei, Sun Dong-Ke, Dai Ting, Zhu Ming-Fang. Modeling of dendritic growth and bubble formation. Acta Physica Sinica, 2012, 61(15): 150501. doi: 10.7498/aps.61.150501
    [13] Zhang A-Man, Wang Chao, Wang Shi-Ping, Cheng Xiao-Da. Experimental study of interaction between bubble and free surface. Acta Physica Sinica, 2012, 61(8): 084701. doi: 10.7498/aps.61.084701
    [14] Zhao Tai-Fei, Ke Xi-Zheng. Monte Carlo simulations for non-line-of-sight ultraviolet scattering coverage area. Acta Physica Sinica, 2012, 61(11): 114208. doi: 10.7498/aps.61.114208
    [15] Wang Shi-Ping, Zhang A-Man, Liu Yun-Long, Yao Xiong-Liang. Numerical simulation of bubbles coupled with an elastic membrane. Acta Physica Sinica, 2011, 60(5): 054702. doi: 10.7498/aps.60.054702
    [16] Deng Yong, Meglinski Igor. Latest progress of Monte Carlo simulation of light transmission in tissues. Acta Physica Sinica, 2010, 59(2): 1396-1401. doi: 10.7498/aps.59.1396
    [17] Zhang A-Man, Yao Xiong-Liang. The law of the underwater explosion bubble motion near free surface. Acta Physica Sinica, 2008, 57(1): 339-353. doi: 10.7498/aps.57.339
    [18] Zhang A-Man, Yao Xiong-Liang. The law of the bubble motion near the wall. Acta Physica Sinica, 2008, 57(3): 1662-1671. doi: 10.7498/aps.57.1662
    [19] Zhang Hua-Wei, Li Yan-Xiang. Study on bubble nucleation in liquid metal. Acta Physica Sinica, 2007, 56(8): 4864-4871. doi: 10.7498/aps.56.4864
    [20] Yao Xi-Lin, Wang Xin-Bing, Lai Jian-Jun. Monte Carlo simulation of the electron motion in an Ar microhollow cathode disch arge. Acta Physica Sinica, 2003, 52(6): 1450-1454. doi: 10.7498/aps.52.1450
Metrics
  • Abstract views:  6022
  • PDF Downloads:  788
  • Cited By: 0
Publishing process
  • Received Date:  07 August 2012
  • Accepted Date:  12 November 2012
  • Published Online:  05 March 2013

/

返回文章
返回