Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of pristine state on conductive percolation model of memristor

Li Zhi-Wei Liu Hai-Jun Xu Xin

Citation:

Effects of pristine state on conductive percolation model of memristor

Li Zhi-Wei, Liu Hai-Jun, Xu Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to its fitting the resistive switching behavior of memristor well, the percolation network model has recently attracted attention in the memristive mechanism field. However, the current 2D percolation network model lacks the pristine states analysis. In this paper, the original model is simplified to study the effects of pristine state on the forming process of conductive percolation channel with the increase of applied voltage. Intuitively, such a percolation network model not only demonstrates the dynamic process of local conducting channels formed in the physical meaning, which verifies that the resistance distribution of the memristor switching is not ideally bistable but can be fitted by Gauss curve; also it contributes to deciphering the unknown conductive mechanisms of memristor with the various types of percolation channel.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61171017), and the Graduate Student Innovation Fund of NUDT (Grant No. S120402).
    [1]

    Yang J J, Inoue I H, Mikolajick T, Hwang C S 2012 MRS Bulletin 37 131

    [2]

    Sawa A 2008 Materials Today 11 28

    [3]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306]

    [4]

    Chua L O 2011 J. Appl. Phys. A 102 765

    [5]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [6]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [7]

    Pershin Y V, Ventra M Di 2012 Proceedings of the IEEE 100 2071

    [8]

    Strukov D B, Alibart F, Williams R S 2012 Appl. Phys. A 106

    [9]

    Fursina A, Sofin R, Shvets I, Natelson D 2009 Phys. Rev. B 79 24

    [10]

    Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, Hwang C S 2010 Nature Nanotech 5 148

    [11]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732

    [12]

    Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S, Hwang C S 2011 Nanotechnology 22 254010

    [13]

    Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D, Medeiros-Ribeiro G, Williams R S 2011 Appl. Phys. A 102 785

    [14]

    Chae S C, Lee J S, Kim S, Lee S B, Chang S H, Liu C, Kahng B, Shin H, Kim D W, Jung C U, Seo S, Lee M J, Noh T W 2008 Adv. Mater. 20 1154

    [15]

    Liu C, Chae S C, Lee J S, Chang S H, Lee S B, Kim D W, Jung C U, Seo S, Ahn S E, Kahng B, Noh T W 2009 J. Phys. D: Appl. Phys. 42 015506

    [16]

    Lee S B, Lee J S, Chang S H, Yoo H K, Kang B S, Kahng B, Lee M J, Kim C J, Noh T W 2011 Appl. Phys. Lett. 98 033502

    [17]

    Shihong M W, Prodromakis T, Salaoru I, Toumazou C, ArXiv: 1206.2746v1 [cond-mat]

    [18]

    Miao F, Yi W, Goldfarb I, Yang J, Zhang M X, Pickett M D, Strachan J P, Medeiros-Ribeiro G, Williams R S 2012 ACS Nano. 6 2312

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Peng H Y, Li Y F, Lin W N, Wang Y Z, Gao X Y, Wu T 2012 Sci. Rep. 2 442

    [21]

    Inoue I H, Yasuda S, Akinaga H, Takagi H, ArXiv: 0702564v1 [cond-mat]

    [22]

    Xu Z T, Jin K J, Gu L, Jin Y L, Ge C, Wang C, Guo H Z, Lu H B, Zhao R Q, Yang G Z 2012 Small. 8 1279

    [23]

    Guo X, Silva S R P, Ishii T 2008 Appl. Phys. Lett. 93 042105

    [24]

    Zezelj M, Stankovi'c I 2012 ArXiv: 1206.0939v2 [cond-mat]

    [25]

    Niemeyer L, Pietronero L, Wiesmann H J 1984 Phys. Rev. Lett. 52 1033

    [26]

    Li J, Ray B, Alam M A, Ostling M 2012 Phys. Rev. E 85 021109

    [27]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902

    [28]

    Cheianov V V, Fal'koV I, Altshuler B L, Aleiner I L 2007 Phys. Rev. Lett. 99 176801

    [29]

    Zhu X J, Su W J, Liu Y W, Hu B L, Pan L, Lu W, Zhang J D, Li R W 2012 Adv. Mater. 24 3941

  • [1]

    Yang J J, Inoue I H, Mikolajick T, Hwang C S 2012 MRS Bulletin 37 131

    [2]

    Sawa A 2008 Materials Today 11 28

    [3]

    Jia L N, Huang A P, Zheng X H, Xiao Z S, Wang M 2012 Acta Phys. Sin. 61 217306 (in Chinese) [贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫 2012 物理学报 61 217306]

    [4]

    Chua L O 2011 J. Appl. Phys. A 102 765

    [5]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [6]

    Bao B C, Hu W, Xu J P, Liu Z, Zou L 2011 Acta Phys. Sin. 60 120502 (in Chinese) [包伯成, 胡文, 许建平, 刘中, 邹凌 2011 物理学报 60 120502]

    [7]

    Pershin Y V, Ventra M Di 2012 Proceedings of the IEEE 100 2071

    [8]

    Strukov D B, Alibart F, Williams R S 2012 Appl. Phys. A 106

    [9]

    Fursina A, Sofin R, Shvets I, Natelson D 2009 Phys. Rev. B 79 24

    [10]

    Kwon D H, Kim K M, Jang J H, Jeon J M, Lee M H, Kim G H, Li X S, Park G S, Lee B, Han S, Kim M, Hwang C S 2010 Nature Nanotech 5 148

    [11]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732

    [12]

    Kim K M, Choi B J, Lee M H, Kim G H, Song S J, Seok J Y, Yoon J H, Han S, Hwang C S 2011 Nanotechnology 22 254010

    [13]

    Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D, Medeiros-Ribeiro G, Williams R S 2011 Appl. Phys. A 102 785

    [14]

    Chae S C, Lee J S, Kim S, Lee S B, Chang S H, Liu C, Kahng B, Shin H, Kim D W, Jung C U, Seo S, Lee M J, Noh T W 2008 Adv. Mater. 20 1154

    [15]

    Liu C, Chae S C, Lee J S, Chang S H, Lee S B, Kim D W, Jung C U, Seo S, Ahn S E, Kahng B, Noh T W 2009 J. Phys. D: Appl. Phys. 42 015506

    [16]

    Lee S B, Lee J S, Chang S H, Yoo H K, Kang B S, Kahng B, Lee M J, Kim C J, Noh T W 2011 Appl. Phys. Lett. 98 033502

    [17]

    Shihong M W, Prodromakis T, Salaoru I, Toumazou C, ArXiv: 1206.2746v1 [cond-mat]

    [18]

    Miao F, Yi W, Goldfarb I, Yang J, Zhang M X, Pickett M D, Strachan J P, Medeiros-Ribeiro G, Williams R S 2012 ACS Nano. 6 2312

    [19]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [20]

    Peng H Y, Li Y F, Lin W N, Wang Y Z, Gao X Y, Wu T 2012 Sci. Rep. 2 442

    [21]

    Inoue I H, Yasuda S, Akinaga H, Takagi H, ArXiv: 0702564v1 [cond-mat]

    [22]

    Xu Z T, Jin K J, Gu L, Jin Y L, Ge C, Wang C, Guo H Z, Lu H B, Zhao R Q, Yang G Z 2012 Small. 8 1279

    [23]

    Guo X, Silva S R P, Ishii T 2008 Appl. Phys. Lett. 93 042105

    [24]

    Zezelj M, Stankovi'c I 2012 ArXiv: 1206.0939v2 [cond-mat]

    [25]

    Niemeyer L, Pietronero L, Wiesmann H J 1984 Phys. Rev. Lett. 52 1033

    [26]

    Li J, Ray B, Alam M A, Ostling M 2012 Phys. Rev. E 85 021109

    [27]

    Rozen J, Lopez R, Haglund R F, Feldman L C 2006 Appl. Phys. Lett. 88 081902

    [28]

    Cheianov V V, Fal'koV I, Altshuler B L, Aleiner I L 2007 Phys. Rev. Lett. 99 176801

    [29]

    Zhu X J, Su W J, Liu Y W, Hu B L, Pan L, Lu W, Zhang J D, Li R W 2012 Adv. Mater. 24 3941

  • [1] Wu Chao-Jun, Fang Li-Yi, Yang Ning-Ning. Dynamic analysis and experiment of chaotic circuit of non-homogeneous fractional memristor with bias voltage source. Acta Physica Sinica, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] Guo Hui-Meng, Liang Yan, Dong Yu-Jiao, Wang Guang-Yi. Simplification of Chua corsage memristor and hardware implementation of its neuron circuit. Acta Physica Sinica, 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] Hu Wei, Liao Jian-Bin, Du Yong-Qian. An analytic modeling strategy for memristor cell applicable to large-scale memristive networks. Acta Physica Sinica, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [4] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [5] Xu Wei, Wang Yu-Qi, Li Yue-Feng, Gao Fei, Zhang Miao-Cheng, Lian Xiao-Juan, Wan Xiang, Xiao Jian, Tong Yi. Design of novel memristor-based neuromorphic circuit and its application in classical conditioning. Acta Physica Sinica, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [6] Shao Nan,  Zhang Sheng-Bing,  Shao Shu-Yuan. Mathematical model of memristor with sensory memory. Acta Physica Sinica, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Analysis of memristor model with learning-experience behavior. Acta Physica Sinica, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [8] Yu Zhi-Qiang, Liu Min-Li, Lang Jian-Xun, Qian Kai, Zhang Chang-Hua. Resistive switching characteristics and resistive switching mechanism of Au/TiO2/FTO memristor. Acta Physica Sinica, 2018, 67(15): 157302. doi: 10.7498/aps.67.20180425
    [9] Wu Jie-Ning, Wang Li-Dan, Duan Shu-Kai. A memristor-based time-delay chaotic systems and pseudo-random sequence generator. Acta Physica Sinica, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [10] Shao Nan, Zhang Sheng-Bing, Shao Shu-Yuan. Modification of memristor model with synaptic characteristics and mechanism analysis of the model's learning-experience behavior. Acta Physica Sinica, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [11] Yuan Ze-Shi, Li Hong-Tao, Zhu Xiao-Hua. A digital-analog hybrid random number generator based on memristor. Acta Physica Sinica, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [12] Yu Ya-Juan, Wang Zai-Hua. A fractional-order memristor model and the fingerprint of the simple series circuits including a fractional-order memristor. Acta Physica Sinica, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [13] Chen Peng, Cai You-Xun, Cai Xiao-Fei, Shi Li-Hui, Yu Xu-Tao. Quantum channel establishing rate model of quantum communication network based on entangled states. Acta Physica Sinica, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [14] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [15] Tian Xiao-Bo, Xu Hui, Li Qing-Jiang. Influence of the cross section area on the conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [16] Liu Dong-Qing, Cheng Hai-Feng, Zhu Xuan, Wang Nan-Nan, Zhang Chao-Yang. Research progress of memristors and memristive mechanism. Acta Physica Sinica, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [17] Dong Zhe-Kang, Duan Shu-Kai, Hu Xiao-Fang, Wang Li-Dan. Two types of nanoscale nonlinear memristor models and their series-parallel circuits. Acta Physica Sinica, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [18] Liang Yan, Yu Dong-Sheng, Chen Hao. A novel meminductor emulator based on analog circuits. Acta Physica Sinica, 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [19] Jia Lin-Nan, Huang An-Ping, Zheng Xiao-Hu, Xiao Zhi-Song, Wang Mei. Progress of memristor modulated by interfacial effect. Acta Physica Sinica, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [20] Bao Bo-Cheng, Hu Wen, Xu Jian-Ping, Liu Zhong, Zou Ling. Analysis and implementation of memristor chaotic circuit. Acta Physica Sinica, 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
Metrics
  • Abstract views:  5942
  • PDF Downloads:  756
  • Cited By: 0
Publishing process
  • Received Date:  05 December 2012
  • Accepted Date:  06 January 2013
  • Published Online:  05 May 2013

/

返回文章
返回