Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the atomic and electronic structures of BiOCl{001} surface using first principles

Li Guo-Qi Zhang Xiao-Chao Ding Guang-Yue Fan Cai-Mei Liang Zhen-Hai Han Pei-De

Citation:

Study on the atomic and electronic structures of BiOCl{001} surface using first principles

Li Guo-Qi, Zhang Xiao-Chao, Ding Guang-Yue, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The surface relaxations, band structures, densities of states and surface energies of BiOCl{001} surfaces containing {001}-1Cl, {001}-BiO and {001}-2Cl are studied using first-principles based on density functional theory. The calculated results indicate that there exist obvious relaxations for the three types of {001} surfaces, especially for their double chlorine layers. The relaxation result of {001}-1Cl surface is the minimum one in the BiOCl{001} surfaces. Compared with the electronic structure of bulk BiOCl, BiOCl{001} surfaces exhibit the smaller band gap and stronger localized energy levels. Besides, both conduction and valence band of {001}-BiO shift towards the lower energy and there exist surface states at the bottom of conduction band. For {001}-2Cl, surface states are located at the top of valence band. The occurrences of these surface states can lead to the obvious reductions of band gaps for {001}-BiO and {001}-2Cl. Furthermore, the surface energy of BiOCl{001} is calculated and investigated. The analysis results show that surface energies of {001}-1Cl, {001}-BiO and {001}-2Cl are 0.09206 J·m-2, 2.392 J·m-2 and 2.461 J·m-2, respectively. Thus the {001}-1Cl possesses the minimum surface energy and the highest stability, while {001}-BiO and {001}-2Cl exhibit the higher reaction activities and are difficult to be exposed in the growth process of BiOCl crystal. Our obtained results provide the theoretical guidance for the further understanding of the facet-dependent photoreactivity of BiOCl, the fine manipulation of their photoreactivity, and the progress of actual application for BiOCl photocatalytic material.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21176168), the International Cooperation Project of Shanxi Province, China (Grant No. 2012081017), and the Science and Technology Project of Taiyuan, China (Grant No. 120123).
    [1]

    Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1

    [2]

    Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731

    [3]

    Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527

    [4]

    Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503

    [5]

    Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1

    [6]

    Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344

    [7]

    Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125

    [8]

    Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115

    [9]

    Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82

    [10]

    Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572

    [11]

    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294

    [12]

    Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553

    [13]

    Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525

    [14]

    Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133

    [15]

    Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490

    [16]

    Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078

    [17]

    Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]

    [18]

    Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951

    [19]

    Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152

    [20]

    Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473

    [21]

    Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Pulay P 1969 Mol. Phys. 17 197

    [26]

    Shanno D F, Phua K H 1978 Math. Program. 14 149

    [27]

    Bannister F A 1934 Nature 134 856

    [28]

    Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101

    [29]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180

    [30]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416

    [31]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [32]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]

    [33]

    Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    [34]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [35]

    Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]

    [36]

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]

    [37]

    Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]

    [38]

    Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49

    [39]

    Cui J, Liu W 2010 Physica B 405 4687

    [40]

    Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602

  • [1]

    Deng Z T, Tang F Q, Muscat A J 2008 Nanotechnology 19 295705-1

    [2]

    Kusainova A M, Lightfoot P, Zhou W Z, Stefanovich S Y, Mosunov A V, Dolgikh V A 2001 Chem. Mater. 13 4731

    [3]

    Charkin D O, Berdonosv P S, Moisejev A M, Shagiakhmetov R R, Dolgikh V A, Lightfoot P 1999 J. Solid. State. Chem. 147 527

    [4]

    Geng J, Hou W H, Lv Y N, Zhu J J, Chen H Y 2005 Inorg. Chem. 44 8503

    [5]

    Cao S H, Guo C F, Lv Y, Guo Y J, Liu Q 2009 Nanotechnology 20 275702-1

    [6]

    Wu S J, Wang C, Cui Y F, Hao W C, Wang T M, Brault P 2011 Mater. Lett. 65 1344

    [7]

    Zhang K L, Liu C M, Huang F Q, Zheng C, Wang W D 2006 Appl. Catal. B: Environ. 68 125

    [8]

    Wu S J, Wang C, Cui Y F, Wang T M, Huang B B, Zhang X Y, Qin X Y, Brault P 2010 Mater. Lett. 64 115

    [9]

    Ye L Q, Deng K J, Xu F, Tian L H, Peng T Y, Zan L 2012 Phys. Chem. Chem. Phys. 14 82

    [10]

    Gao F D, Zeng D W, Huang Q W, Tian S Q, Xie C S 2012 Phys. Chem. Chem. Phys. 14 10572

    [11]

    Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J 2012 J. Am. Chem. Soc. 134 4294

    [12]

    Huang L, Yang J H, Wang X L, Han J F, Han H X, Li C 2013 Phys. Chem. Chem. Phys. 15 553

    [13]

    Xiang Q J, Yu J G 2011 Chin. J. Catal. 32 525

    [14]

    Pan J, Liu G, Lu G Q, Cheng H M 2011 Angew. Chem. Int. Ed. 50 2133

    [15]

    Bi Y P, Ouyang S X, Umezawa N, Cao J Y, Ye J H 2011 J. Am. Chem. Soc. 133 6490

    [16]

    Yang H G, Liu G, Qiao S Z, Sun C H, Jin Y G, Smith S C, Zou J, Cheng H M, Lu G Q 2009 J. Am. Chem. Soc. 131 4078

    [17]

    Wei P Y, Yang Q L, Guo L 2009 Prog. Chem. 21 1734 (in Chinese) [魏平玉, 杨青林, 郭林2009化学进展 21 1734]

    [18]

    Ye L Q, Zan L, Tian L H, Peng T Y 2011 Chem. Commun. 47 6951

    [19]

    Wang C H, Zhang X T, Yuan B, Shao C L, Liu Y C 2012 Micro Nano Lett. 7 152

    [20]

    Jiang J, Zhao K, Xiao X Y, Zhang L Z 2012 J. Am. Chem. Soc. 134 4473

    [21]

    Zhang H J, Liu L, Zhou Z 2012 Rsc. Adv. 2 9224

    [22]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717

    [23]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [24]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [25]

    Pulay P 1969 Mol. Phys. 17 197

    [26]

    Shanno D F, Phua K H 1978 Math. Program. 14 149

    [27]

    Bannister F A 1934 Nature 134 856

    [28]

    Huang W L, Zhu Q S 2008 Comput. Mater. Sci. 43 1101

    [29]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Comput. Mater. Sci. 61 180

    [30]

    Zhang X C, Zhao L J, Fan C M, Liang Z H, Han P D 2012 Physica B 407 4416

    [31]

    Stampfl C, van de Walle C G 1999 Phys. Rev. B 59 5521

    [32]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440 (in Chinese) [沈益斌, 周勋, 徐明, 丁迎春, 段满益, 令狐荣锋, 祝文军 2007 物理学报 56 3440]

    [33]

    Zhang H J, Liu L, Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286

    [34]

    Ma X G, Tang C Q, Huang J Q, Hu L F, Xue X, Zhou W B 2006 Acta Phys. Sin. 55 4208 (in Chinese) [马新国, 唐超群, 黄金球, 胡连峰, 薛霞, 周文斌 2006 物理学报 55 4208]

    [35]

    Ma J X, Jia Y, Liang E J, Wang X C, Wang F, Hu X 2003 Acta Phys. Sin. 52 3155 (in Chinese) [马健新, 贾瑜, 梁二军, 王晓春, 王飞, 胡行 2003 物理学报 52 3155]

    [36]

    Du Y J, Chang B K, Zhang J J, Li B, Wang X H 2012 Acta Phys. Sin. 61 067101 (in Chinese) [杜玉杰, 常本康, 张俊举, 李飙, 王晓晖 2012 物理学报 61 067101]

    [37]

    Lu H L, Xu M, Chen W, Ren J, Ding S J, Zhang W 2006 Acta Phys. Sin. 55 1374 (in Chinese) [卢红亮, 徐敏, 陈玮, 任杰, 丁士进, 张卫 2006 物理学报 55 1374]

    [38]

    Sambrano J R, Longo V M, Longo E, Taft C A 2007 J. Mol. Struct.: Theochem 813 49

    [39]

    Cui J, Liu W 2010 Physica B 405 4687

    [40]

    Zhou K B, Li Y D 2012 Angew. Chem. Int. Ed. 51 602

  • [1] Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin. First-principles study of surface modification of CuSe. Acta Physica Sinica, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [2] Chen Lu, Li Ye-Fei, Zheng Qiao-Ling, Liu Qing-Kun, Gao Yi-Min, Li Bo, Zhou Chang-Meng. Theoretical study of atomic relaxation, surface energy, electronic structure and properties of B2- and B19'-NiTi surfaces. Acta Physica Sinica, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [3] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [4] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [5] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [6] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [7] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [8] Liang Pei, Liu Yang, Wang Le, Wu Ke, Dong Qian-Min, Li Xiao-Yan. Investigation of the doping failure induced by DB in the SiNWs using first principles method. Acta Physica Sinica, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [9] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [10] Shu Yu, Zhang Yan, Zhang Jian-Min. First-principles analysis of properties of Cu surfaces. Acta Physica Sinica, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [11] Wang Bo, Zhang Jian-Min, Yin Bao-Xiang, Lu Yan-Dong, Gan Xiu-Ying, Xu Ke-Wei. Anisotropy analysis of surface energy and prediction of surface segregation for fcc metals. Acta Physica Sinica, 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [12] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [13] Ouyang Chu-Ying, Hu Guo-Jin. Influence of surface effect to the performance of LiMn2O4 cathode material for lithium ion batteries. Acta Physica Sinica, 2010, 59(8): 5863-5869. doi: 10.7498/aps.59.5863
    [14] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [15] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [16] Huang Jin, Sun Qi-Cheng. Experimental study and analysis of energy evolution of liquid foam drainage in one dimension. Acta Physica Sinica, 2007, 56(10): 6124-6131. doi: 10.7498/aps.56.6124
    [17] Yao Hong-Ying, Gu Xiao, Ji Min, Zhang Di-Er, Gong Xin-Gao. First-principles study of metal atoms adsorbed on SiO2 surface. Acta Physica Sinica, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [18] Zheng Rui-Lun, Tao Ye. The influence of shape and atomicity on the surface energy of nanocrystal. Acta Physica Sinica, 2006, 55(4): 1942-1946. doi: 10.7498/aps.55.1942
    [19] Zhang Jian-Min, Xu Ke-Wei, Ma Fei. Calculation of surface energy of Cu crystal with modified embedded-atom method. Acta Physica Sinica, 2003, 52(8): 1993-1999. doi: 10.7498/aps.52.1993
    [20] Liu Hong. Surface energy of the biaxial nematic liquid crystal. Acta Physica Sinica, 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
Metrics
  • Abstract views:  5904
  • PDF Downloads:  960
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2013
  • Accepted Date:  03 March 2013
  • Published Online:  05 June 2013

/

返回文章
返回