Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Constructal entransy dissipation rate minimization of a disc on micro and nanoscales

Chen Lin-Gen Feng Hui-Jun Xie Zhi-Hui Sun Feng-Rui

Citation:

Constructal entransy dissipation rate minimization of a disc on micro and nanoscales

Chen Lin-Gen, Feng Hui-Jun, Xie Zhi-Hui, Sun Feng-Rui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Based on constructal theory, the constructal optimization of a disc on micro and nanoscales is carried out by taking minimum entransy dissipation rate as optimization objective; and the optimal construction of the disc with minimum dimensionless equivalent thermal resistance is obtained. The result shows that the optimal construction of the disc when the size effectis taken into account is obviously different from that without considering the size effect. There exists an optimal dimensionless channel length of the high conductivity material which leads to the minimum dimensionless equivalent thermal resistance. With the increase in the number of the elemental sectors, the minimum dimensionless equivalent thermal resistance decreases first and then increases, and there exists an optimal number of the elemental sectors which leads to the double minimum dimensionless equivalent thermal resistance, which is different from the performance characteristic of the disc on a conventional scale. The entransy dissipation rate of the disc, based on the minimization of entransy dissipation rate, is reduced by 7.31% as compared with that based on maximum temperature difference, that is, the average heat transfer temperature difference of the disc is reduced by 7.31%. The optimal construction on micro and nanoscales, obtained based on minimum entransy dissipation rate, can reduce the average heat transfer temperature difference of a disc, and improves its global heat transfer performance simultaneously. The work in this paper can help to further extend the application range of the entransy dissipation extremum principle.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51176203, 51206184), and the Natural Science Foundation of Hubei Province, China (Grant No. 2012FB06905).
    [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [5]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [6]

    Wu W J, Chen L G, Sun F R 2006 Sci. China Ser. E Tech. Sci. 49 332

    [7]

    Wei S H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 2981

    [8]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [9]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [10]

    Rocha L A O, Lorente S, Bejan A 2006 Int. J. Heat Mass Transfer 49 2626

    [11]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [12]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [13]

    da Silva A K, Vasile C, Bejan A 2004 Int. J. Heat Mass Transfer 47 4257

    [14]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [15]

    Duncan A B, Peterson G P 1994 Appl. Mech. Rev. 47 397

    [16]

    Guo Z Y 2000 Advances In Mechanics 30 1 (in Chinese) [过增元 2000 力学进展 30 1]

    [17]

    Guo Z Y, Li Z X 2003 Int. J. Heat Mass Transfer 46 149

    [18]

    Guo Z Y, Li Z X 2003 Int. J. Heat Fluid Flow 24 284

    [19]

    Liu T, Ji J, Guo Z Y, Li Z X 2004 Chin. Sci. fund 6 349 (in Chinese) [刘涛, 纪军, 过增元, 李志信 2004 中国科学基金 6 349]

    [20]

    Gosselin L, Bejan A 2004 J. Appl. Phys. 96 5852

    [21]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [22]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]

    [23]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [24]

    Han G Z, Zhu H Y, Cheng X X, Guo Z Y 2005 J. Engng. Thermophys 26 1022 (in Chinese) [韩光泽, 朱宏晔, 程新广, 过增元 2005 工程热物理学报 26 1022]

    [25]

    Han G, Guo Z Y 2007 Proc. CSEE 27 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 27 98]

    [26]

    hu H Y, Chen Z J, Guo Z Y 2007 Pro. Natural Sci. 17 1692 (in Chinese) [朱宏晔, 陈泽敬, 过增元 2007 自然科学进展 17 1692]

    [27]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [28]

    Chen L G 2013 J. Naval University Engng 25 1 (in Chinese) [陈林根 2013 海军工程大学学报 25 1]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 物理学报 58 4766]

    [30]

    Xu M 2011 Energy 36 4272

    [31]

    Guo J F, Xu M T, Cheng L 2011 Sci. China Tech. Sci. 54 1267

    [32]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 物理学报 60 118103]

    [33]

    Cheng X T, Dong Y, Liang X G 2011 Acta Phys. Sin. 60 114402 (in Chinese) [程雪涛, 董源, 梁新刚 2011 物理学报 60 114402]

    [34]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [35]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [36]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [37]

    Chen Q, Xu Y C, Guo Z Y 2012 Chin. Sci. Bull. 57 4646

    [38]

    Guo J F, Huai X L 2012 Energy 43 355

    [39]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sc. 55 779

    [40]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [41]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [42]

    Bejan A 1982 Entropy Generation through Heat and Fluid Flow (New York: Wiley) pp1-240

    [43]

    Dong Y, Guo Z Y 2012 Acta Phys. Sin. 61 030507 (in Chinese) [董源, 过增元 2012 物理学报 61 030507]

    [44]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

  • [1]

    Bejan A 2000 Shape and Structure, from Engineering to Nature (Cambridge: Cambridge University Press) pp1-314

    [2]

    Bejan A, Lorente S 2008 Design with Constructal Theory (New Jersey: Wiley) pp1-516

    [3]

    Chen L G 2012 Sci. China: Tech. Sci. 55 802

    [4]

    Bejan A 1997 Int. J. Heat Mass Transfer 40 799

    [5]

    Ghodoossi L, Egrican N 2003 J. Appl. Phys. 93 4922

    [6]

    Wu W J, Chen L G, Sun F R 2006 Sci. China Ser. E Tech. Sci. 49 332

    [7]

    Wei S H, Chen L G, Sun F R 2009 Sci. China Ser. E Tech. Sci. 52 2981

    [8]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 2400

    [9]

    Rocha L A O, Lorente S, Bejan A 2002 Int. J. Heat Mass Transfer 45 1643

    [10]

    Rocha L A O, Lorente S, Bejan A 2006 Int. J. Heat Mass Transfer 49 2626

    [11]

    Xiao Q H, Chen L G, Sun F R 2011 Chin. Sci. Bull. 56 102

    [12]

    Xiao Q H, Chen L G, Sun F R 2011 Int. J. Therm. Sci. 50 1031

    [13]

    da Silva A K, Vasile C, Bejan A 2004 Int. J. Heat Mass Transfer 47 4257

    [14]

    Chen L G, Wei S H, Sun F R 2011 Int. J. Heat Mass Transfer 54 210

    [15]

    Duncan A B, Peterson G P 1994 Appl. Mech. Rev. 47 397

    [16]

    Guo Z Y 2000 Advances In Mechanics 30 1 (in Chinese) [过增元 2000 力学进展 30 1]

    [17]

    Guo Z Y, Li Z X 2003 Int. J. Heat Mass Transfer 46 149

    [18]

    Guo Z Y, Li Z X 2003 Int. J. Heat Fluid Flow 24 284

    [19]

    Liu T, Ji J, Guo Z Y, Li Z X 2004 Chin. Sci. fund 6 349 (in Chinese) [刘涛, 纪军, 过增元, 李志信 2004 中国科学基金 6 349]

    [20]

    Gosselin L, Bejan A 2004 J. Appl. Phys. 96 5852

    [21]

    Guo Z Y, Zhu H Y, Liang X G 2007 Int. J. Heat Mass Transfer 50 2545

    [22]

    Li Z X, Guo Z Y 2010 Field synergy principle of heat convection optimization (Beijing: Science Press) pp78-97 (in Chinese) [李志信, 过增元 2010 对流传热优化的场协同理论 (北京: 科学出版社) 第78–97页]

    [23]

    Guo Z Y, Cheng X G, Xia Z Z 2003 Chin. Sci. Bull. 48 406

    [24]

    Han G Z, Zhu H Y, Cheng X X, Guo Z Y 2005 J. Engng. Thermophys 26 1022 (in Chinese) [韩光泽, 朱宏晔, 程新广, 过增元 2005 工程热物理学报 26 1022]

    [25]

    Han G, Guo Z Y 2007 Proc. CSEE 27 98 (in Chinese) [韩光泽, 过增元 2007 中国电机工程学报 27 98]

    [26]

    hu H Y, Chen Z J, Guo Z Y 2007 Pro. Natural Sci. 17 1692 (in Chinese) [朱宏晔, 陈泽敬, 过增元 2007 自然科学进展 17 1692]

    [27]

    Chen L G 2012 Chin. Sci. Bull. 57 4404

    [28]

    Chen L G 2013 J. Naval University Engng 25 1 (in Chinese) [陈林根 2013 海军工程大学学报 25 1]

    [29]

    Liu X B, Guo Z Y 2009 Acta Phys. Sin. 58 4766 (in Chinese) [柳雄斌, 过增元 2009 物理学报 58 4766]

    [30]

    Xu M 2011 Energy 36 4272

    [31]

    Guo J F, Xu M T, Cheng L 2011 Sci. China Tech. Sci. 54 1267

    [32]

    Cheng X T, Xu X H, Liang X G 2011 Acta Phys. Sin. 60 118103 (in Chinese) [程雪涛, 徐向华, 梁新刚 2011 物理学报 60 118103]

    [33]

    Cheng X T, Dong Y, Liang X G 2011 Acta Phys. Sin. 60 114402 (in Chinese) [程雪涛, 董源, 梁新刚 2011 物理学报 60 114402]

    [34]

    Cheng X T, Liang X G, Xu X H 2011 Acta Phys. Sin. 60 060512 (in Chinese) [程雪涛, 梁新刚, 徐向华 2011 物理学报 60 060512]

    [35]

    Hu G J, Cao B Y, Guo Z Y 2011 Chin. Sci. Bull. 56 2974

    [36]

    Xu Y C, Chen Q 2012 Int. J. Heat Mass Transfer 55 5148

    [37]

    Chen Q, Xu Y C, Guo Z Y 2012 Chin. Sci. Bull. 57 4646

    [38]

    Guo J F, Huai X L 2012 Energy 43 355

    [39]

    Feng H J, Chen L G, Sun F R 2012 Sci. China: Tech. Sc. 55 779

    [40]

    Wu J, Cheng X T 2013 Int. J. Heat Mass Transfer 58 374

    [41]

    Cheng X T, Zhang Q Z, Xu X H, Liang X G 2013 Chin. Phys. B 22 020503

    [42]

    Bejan A 1982 Entropy Generation through Heat and Fluid Flow (New York: Wiley) pp1-240

    [43]

    Dong Y, Guo Z Y 2012 Acta Phys. Sin. 61 030507 (in Chinese) [董源, 过增元 2012 物理学报 61 030507]

    [44]

    Cheng X T, Liang X G 2013 Chin. Phys. B 22 010508

  • [1] Quan Hai-Tao, Dong Hui, Sun Chang-Pu. Theoretical and experiments of mesoscopic statistical thermodynamics. Acta Physica Sinica, 2023, 72(23): 230501. doi: 10.7498/aps.72.20231608
    [2] Wei Yi-Huan. Thermodynamic properties and matter accretion properties of Kiselev black hole. Acta Physica Sinica, 2019, 68(6): 060402. doi: 10.7498/aps.68.20182055
    [3] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [4] Zhang Long-Yan,  Xu Jin-Liang,  Lei Jun-Peng. Molecular dynamics study of bubble nucleation on a nanoscale. Acta Physica Sinica, 2018, 67(23): 234702. doi: 10.7498/aps.67.20180993
    [5] Wang Gang, Xie Zhi-Hui, Fan Xu-Dong, Chen Lin-Gen, Sun Feng-Rui. Comparative studies on constructal optimizations of discrete heat generation components based on entransy dissipation minimization and maximum temperature minimization. Acta Physica Sinica, 2017, 66(20): 204401. doi: 10.7498/aps.66.204401
    [6] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Experimental study on + shaped high conductivity constructal channels based on entransy theory. Acta Physica Sinica, 2016, 65(2): 024401. doi: 10.7498/aps.65.024401
    [7] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [8] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of variable cross-section insulation layer of steel rolling reheating furnace wall based on entransy theory. Acta Physica Sinica, 2015, 64(5): 054402. doi: 10.7498/aps.64.054402
    [9] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal optimization of complex fin with convective heat transfer based on entransy dissipation rate minimization. Acta Physica Sinica, 2015, 64(3): 034701. doi: 10.7498/aps.64.034701
    [10] Xia Shao-Jun, Chen Lin-Gen, Ge Yan-Lin, Sun Feng-Rui. Influence of heat leakage on entransy dissipation minimization of heat exchanger. Acta Physica Sinica, 2014, 63(2): 020505. doi: 10.7498/aps.63.020505
    [11] Feng Hui-Jun, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Constructal entransy dissipation rate minimization the problem of constracting “disc-point” cooling channels. Acta Physica Sinica, 2013, 62(13): 134703. doi: 10.7498/aps.62.134703
    [12] Song Xiao-Yan, Xu Wen-Wu, Zhang Zhe-Xu. Nanoscale stabilization of metastable phase: thermodynamic model and experimental studies. Acta Physica Sinica, 2012, 61(20): 200510. doi: 10.7498/aps.61.200510
    [13] Liang Rui-Bing, Sun Qi-Zhen, Wo Jiang-Hai, Liu De-Ming. Theoretical investigation on refractive index sensor basedon Bragg grating in micro/nanofiber. Acta Physica Sinica, 2011, 60(10): 104221. doi: 10.7498/aps.60.104221
    [14] Jia Ming, Lai Yan-Qing, Tian Zhong-Liang, Liu Ye-Xiang. Thermal dynamics properties of bcc Mo nanofilm from MD simulation. Acta Physica Sinica, 2009, 58(2): 1139-1148. doi: 10.7498/aps.58.1139
    [15] Zhang Dong-Xian, Liu Chao, Zhang Hai-Jun. The effect of infrared laser-induced micro/nano photothermal expansion and the novel method of photothermal actuation. Acta Physica Sinica, 2008, 57(5): 3107-3112. doi: 10.7498/aps.57.3107
    [16] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [17] Song Xiao-Yan, Gao Jin-Ping, Zhang Jiu-Xing. Thermodynamic functions of nanocrystals and its application to the study of phase transformations. Acta Physica Sinica, 2005, 54(3): 1313-1319. doi: 10.7498/aps.54.1313
    [18] Lu Ke. . Acta Physica Sinica, 1995, 44(9): 1454-1460. doi: 10.7498/aps.44.1454
    [19] OU FA. . Acta Physica Sinica, 1995, 44(10): 1541-1550. doi: 10.7498/aps.44.1541
    [20] LI FU-BlN. THE MICROSCOPIC PHENOMENOLOGICAL THEORY OF ANALYSIS FOR THE PROBLEM OF NONEQUILIBRIUM FLUCTUATIONS (Ⅰ)——A NEW THEORY OF EXTENDED IRREVERSIBLE THERMODY-NAMICS AND NONEQUILIBRIUM CORRECTIONS OF THE FLUCTUATION-DISSIPATION EXPRESSIONS FOR THE HEAT FL. Acta Physica Sinica, 1989, 38(9): 1467-1474. doi: 10.7498/aps.38.1467
Metrics
  • Abstract views:  5335
  • PDF Downloads:  633
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2013
  • Accepted Date:  22 March 2013
  • Published Online:  05 July 2013

/

返回文章
返回