Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composite interfaces and electrode properties of resistive random access memory devices

Yang Jin Zhou Mao-Xiu Xu Tai-Long Dai Yue-Hua Wang Jia-Yu Luo Jing Xu Hui-Fang Jiang Xian-Wei Chen Jun-Ning

Citation:

Composite interfaces and electrode properties of resistive random access memory devices

Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • For the three kinds of composite materials, i.e., Cu(111)/HfO2(001), Cu(111)/HfO2(010) and Cu(111)/HfO2(100), the first-principles method based on the density functional theory is adopted to calculate their rates of mismatching of interface model, interface adhesion energies, the electric charge densities, the electron localization functions, and the charge density differences separately. The results indicate that the rate of mismatching of the Cu(111)/HfO2(010) interface model is lowest and its interface adhesion energy is higher than the others’, which means that the Cu(111)/HfO2(010) is most stable. From the analyses of charge densities and electron localization functions of the three interfaces, it can be found that only the Cu(111)/HfO2(010) interface is able to form the connective electronic channel along the vertical direction of the Cu electrode. This indicates that electrons possess the localizabilty and connectivity along the HfO2(010) direction, which corresponds to the switching-on direction of the resistive random access memory (RRAM) device. The charge density difference analysis reveals that the charge density distributions overlap, the electrons transfer mutually and bond at the interface of the Cu(111)/HfO2(010). In addition, based on the model of Cu (111)/HfO2 (010) interface, the formation energies of the interstitial Cu at different positions are also calculated. The results show that the closer to the interface the Cu atom, the more easily it migrates into HfO2. This indicates that the electrochemical reaction takes place more easily under the applied voltage, which results in the formation and rupture of Cu conductive filaments. All the above findings will provide a theoretical guidance for improving the performances of RRAM devices.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106), the Major Projects of the Ministry of Science and Technology of China (Grant Nos. 2009ZX01031-001-004, 2010ZX01030-001-001-004), and the Young Scientists Foundation of Anhui University, China (Grant No. KJQN1011).
    [1]

    Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M, Vandervorst W 2013 Appl. Phys. Lett. 102 121602

    [2]

    Lian W T, Long S B, L H B, Liu Q, Li Y T, Zhang S, Wang Y, Huo Z L, Dai Y H, Chen J N, Liu M 2011 Chin. Sci. Bull. 56 461

    [3]

    Yalon E, Cohen S, Gavrilov A, Ritter D 2012 Nanotechnology 23 465201

    [4]

    Robertson J, Gillen R 2013 Microelectron. Eng. 109 208

    [5]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [6]

    Gao B, Sun B, Zhang H W, Liu L F, Han R Q, Kang J F, Yu B 2009 IEEE Electron Dev. Lett. 30 1326

    [7]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond. Sci. Tech. 23 075019

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Proceedings of the Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27–31, 2007 p46

    [9]

    Li H X, Chen X P, Chen Q, Mao Q N, Xi J H, Ji Z G 2013 Acta Phys. Sin. 62 077202 (in Chinese) [李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国 2013 物理学报 62 077202]

    [10]

    Kim W G, Rhee S W 2010 Microelectron. Eng. 87 98

    [11]

    Zhou X L, Feng J, Cao J C, Chen J C, Sun J L 2008 Chinese J. Nonferrous Metal. 18 2253 (in Chinese) [周晓龙, 冯晶, 曹建春, 陈敬超, 孙加林 2008 中国有色金属学报 18 2253

    [12]

    Muňoz M C, Gallego S, Beltrán J I, Cerdá J 2006 Surf. Sci. Rep. 61 304

    [13]

    Jiang D E, Carter E A 2005 Acta Mater. 53 4498

    [14]

    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y 2003 Sci. Technol. Adv. Mat. 4 575

    [15]

    Dmitriev S V, Yoshikawa N, Tanaka Y, Kagawa Y 2006 Mater. Sci. Eng. A 418 36

    [16]

    Dmitriev S V, Yoshikawa N, Kohyama M, Tanaka S, Yang R, Kagawa Y 2004 Acta Mater. 52 1959

    [17]

    Hashibon A, Elsässer C, Rhle M 2007 Acta Mater. 55 1657

    [18]

    Wang Y 2012 Ph. D. Dissertation (Gansu: Gansu University) (in Chinese) [王艳 2012 博士学位论文(甘肃: 兰州大学)]

    [19]

    Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nature Commun. 3 732

    [20]

    Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M 2007 Appl. Phys. Lett. 91 092110

    [21]

    Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J 2011 Adv. Mater. 23 3272

    [22]

    Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R 2012 Appl. Phys. Lett. 100 072101

    [23]

    Tousimi K, Valiev R, Yavari A R 2000 Mater. Phys. Mech. 2 63

    [24]

    Wang J M, Zhou J, Liu J D, Xiong Z H 2006 Jiangxi Science 24 1 (in Chinese) [王建敏, 周珏, 刘继东, 熊志华 2006 江西科学 24 1]

    [25]

    Lu Z S, Li S S, Chen C, Yang Z X 2013 Acta Phys. Sin. 62 117301 (in Chinese) [路战胜, 李莎莎, 陈晨, 杨宗献 2013 物理学报 62 117301]

    [26]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [27]

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 物理学报 57 6526]

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Christensen M, Dudiy S, Wahnström G 2002 Phys. Rev. B 65 045408

    [30]

    Prada S, Rosa M, Giordano L, Di Valentin C, Pacchioni G 2011 Phys. Rev. B 83 245314

    [31]

    Tse K Y, Robertson J 2007 Phys. Rev. Lett. 99 086805

    [32]

    Savin A, Jepsen O, Flad J, Andresen O K, Preuss H 1992 Angew. Chem. Int. Edit. 31 187

  • [1]

    Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M, Vandervorst W 2013 Appl. Phys. Lett. 102 121602

    [2]

    Lian W T, Long S B, L H B, Liu Q, Li Y T, Zhang S, Wang Y, Huo Z L, Dai Y H, Chen J N, Liu M 2011 Chin. Sci. Bull. 56 461

    [3]

    Yalon E, Cohen S, Gavrilov A, Ritter D 2012 Nanotechnology 23 465201

    [4]

    Robertson J, Gillen R 2013 Microelectron. Eng. 109 208

    [5]

    Meng Y, Zhang P J, Liu Z Y, Liao Z L, Pan X Y, Liang X J, Zhao H W, Chen D M 2010 Chin. Phys. B 19 037304

    [6]

    Gao B, Sun B, Zhang H W, Liu L F, Han R Q, Kang J F, Yu B 2009 IEEE Electron Dev. Lett. 30 1326

    [7]

    Xu N, Liu L F, Sun X, Chen C, Wang Y, Han D D, Liu X Y, Han R Q, Kang J F, Yu B 2008 Semicond. Sci. Tech. 23 075019

    [8]

    Park J W, Jung K, Yang M K, Lee J K 2007 2007 Proceedings of the Sixteenth IEEE International Symposium on the Applications of Ferroelectrics Nara-City, Japan, May 27–31, 2007 p46

    [9]

    Li H X, Chen X P, Chen Q, Mao Q N, Xi J H, Ji Z G 2013 Acta Phys. Sin. 62 077202 (in Chinese) [李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国 2013 物理学报 62 077202]

    [10]

    Kim W G, Rhee S W 2010 Microelectron. Eng. 87 98

    [11]

    Zhou X L, Feng J, Cao J C, Chen J C, Sun J L 2008 Chinese J. Nonferrous Metal. 18 2253 (in Chinese) [周晓龙, 冯晶, 曹建春, 陈敬超, 孙加林 2008 中国有色金属学报 18 2253

    [12]

    Muňoz M C, Gallego S, Beltrán J I, Cerdá J 2006 Surf. Sci. Rep. 61 304

    [13]

    Jiang D E, Carter E A 2005 Acta Mater. 53 4498

    [14]

    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y 2003 Sci. Technol. Adv. Mat. 4 575

    [15]

    Dmitriev S V, Yoshikawa N, Tanaka Y, Kagawa Y 2006 Mater. Sci. Eng. A 418 36

    [16]

    Dmitriev S V, Yoshikawa N, Kohyama M, Tanaka S, Yang R, Kagawa Y 2004 Acta Mater. 52 1959

    [17]

    Hashibon A, Elsässer C, Rhle M 2007 Acta Mater. 55 1657

    [18]

    Wang Y 2012 Ph. D. Dissertation (Gansu: Gansu University) (in Chinese) [王艳 2012 博士学位论文(甘肃: 兰州大学)]

    [19]

    Yang Y, Gao P, Gaba S, Chang T, Pan X, Lu W 2012 Nature Commun. 3 732

    [20]

    Sakamoto T, Lister K, Banno N, Hasegawa T, Terabe K, Aono M 2007 Appl. Phys. Lett. 91 092110

    [21]

    Choi S J, Park G S, Kim K H, Cho S, Yang W Y, Li X S, Moon J H, Lee K J 2011 Adv. Mater. 23 3272

    [22]

    Peng S, Zhuge F, Chen X, Zhu X, Hu B, Pan L, Chen B, Li R 2012 Appl. Phys. Lett. 100 072101

    [23]

    Tousimi K, Valiev R, Yavari A R 2000 Mater. Phys. Mech. 2 63

    [24]

    Wang J M, Zhou J, Liu J D, Xiong Z H 2006 Jiangxi Science 24 1 (in Chinese) [王建敏, 周珏, 刘继东, 熊志华 2006 江西科学 24 1]

    [25]

    Lu Z S, Li S S, Chen C, Yang Z X 2013 Acta Phys. Sin. 62 117301 (in Chinese) [路战胜, 李莎莎, 陈晨, 杨宗献 2013 物理学报 62 117301]

    [26]

    Kresse G, Joubert J 1999 Phys. Rev. B 59 1758

    [27]

    Xu B, Pan B C 2008 Acta Phys. Sin. 57 6526 (in Chinese) [徐波, 潘必才 2008 物理学报 57 6526]

    [28]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [29]

    Christensen M, Dudiy S, Wahnström G 2002 Phys. Rev. B 65 045408

    [30]

    Prada S, Rosa M, Giordano L, Di Valentin C, Pacchioni G 2011 Phys. Rev. B 83 245314

    [31]

    Tse K Y, Robertson J 2007 Phys. Rev. Lett. 99 086805

    [32]

    Savin A, Jepsen O, Flad J, Andresen O K, Preuss H 1992 Angew. Chem. Int. Edit. 31 187

  • [1] Zha Jun-Wei, Zha Lei-Jun, Zheng Ming-Sheng. Optimization strategies for energy storage properties of polyvinylidene fluoride composites. Acta Physica Sinica, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [2] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [3] Zhou Zheng, Huang Peng, Kang Jin-Feng. Non-volatile memory based in-memory computing technology. Acta Physica Sinica, 2022, 71(14): 148507. doi: 10.7498/aps.71.20220397
    [4] Zhou Hai-Tao, Xiong Xi-Ya, Luo Fei, Luo Bing-Wei, Liu Da-Bo, Shen Cheng-Min. Graphene enforced copper matrix composites fabricated by in-situ deposition technique. Acta Physica Sinica, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [5] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [6] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [7] Zhang Zhi-Chao, Wang Fang, Wu Shi-Jian, Li Yi, Mi Wei, Zhao Jin-Shi, Zhang Kai-Liang. Influneces of different oxygen partial pressures on switching properties of Ni/HfOx/TiN resistive switching devices. Acta Physica Sinica, 2018, 67(5): 057301. doi: 10.7498/aps.67.20172194
    [8] Guo Jia-Jun, Dong Jing-Yu, Kang Xin, Chen Wei, Zhao Xu. Effect of transition metal element X (X=Mn, Fe, Co, and Ni) doping on performance of ZnO resistive memory. Acta Physica Sinica, 2018, 67(6): 063101. doi: 10.7498/aps.67.20172459
    [9] Zhang Yuan, Gao Yan-Jun, Hu Cheng, Tan Xing-Yi, Qiu Da, Zhang Ting-Ting, Zhu Yong-Dan, Li Mei-Ya. Optimization design for magnetoelectric coupling property of the magnet/bimorph composite. Acta Physica Sinica, 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [10] Dai Yue-Hua, Pan Zhi-Yong, Chen Zhen, Wang Fei-Fei, Li Ning, Jin Bo, Li Xiao-Feng. Orientation and concentration of Ag conductive filament in HfO2-based resistive random access memory: first-principles study. Acta Physica Sinica, 2016, 65(7): 073101. doi: 10.7498/aps.65.073101
    [11] Jiang Ran, Du Xiang-Hao, Han Zu-Yin, Sun Wei-Deng. Cluster distribution for oxygen vacancy in Ti/HfO2/Pt resistive switching memory device. Acta Physica Sinica, 2015, 64(20): 207302. doi: 10.7498/aps.64.207302
    [12] Chen Ran, Zhou Li-Wei, Wang Jian-Yun, Chen Chang-Jun, Shao Xing-Long, Jiang Hao, Zhang Kai-Liang, Lü Lian-Rong, Zhao Jin-Shi. Multilevel switching mechanism for resistive random access memory based on Cu/SiOx/Al structure. Acta Physica Sinica, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [13] Sun Zhi, Wang Xuan, Han Bai, Song Wei, Zhang Dong, Guo Xiang-Yu, Lei Qing-Quan. Dielectric property of binary phase composite and its interface investigated by electric force microscope. Acta Physica Sinica, 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [14] Li Zhen-Wu. Opto-electronic properties of CdS nano particle/carbon nanotube composites. Acta Physica Sinica, 2012, 61(1): 016103. doi: 10.7498/aps.61.016103
    [15] Huo Yan, Zhang Cun-Lin. Quantitative infrared prediction method for defect depth in carbon fiber reinforced plastics composite. Acta Physica Sinica, 2012, 61(14): 144204. doi: 10.7498/aps.61.144204
    [16] Zhou Li-Mei, Li Wei, Jiang Jun, Chen Jian-Min, Li Yong, Xu Gao-Jie. Preparation and thermoelectric properties of β-Zn4Sb3/Zn1-δAlδO. Acta Physica Sinica, 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [17] Sun Jian-Ping, Weng Jia-Bao, Huang Xiao-Zhu, Ma Lin-Pu. In-situ polymerization and properties of poly (2,5-dibutyloxy-1,4-phenylene vinylene)/multi-walled carbon nanotube composites. Acta Physica Sinica, 2009, 58(9): 6523-6529. doi: 10.7498/aps.58.6523
    [18] Liu Gui-Li, Yang Zhong-Hua, Fang Ge-Liang. Electronic theory study of interface characteristic of magnesium/carbon nanotube with nickel. Acta Physica Sinica, 2009, 58(5): 3364-3369. doi: 10.7498/aps.58.3364
    [19] Liu Gui-Li, Guo Yu-Fu, Li Rong-De. Electronic theory of interface characteristics of ZA27/CNT. Acta Physica Sinica, 2007, 56(7): 4075-4078. doi: 10.7498/aps.56.4075
    [20] ZHANG RUI, WAN MING-XI, CAO WEN-WU. GUIDED WAVE IN ULTRA-THIN LAYERED COMPOSITE STRUCTURE WITH WEAK AND SLIP INTERFA CE IN DIFFERENT DEPTH. Acta Physica Sinica, 2000, 49(7): 1297-1302. doi: 10.7498/aps.49.1297
Metrics
  • Abstract views:  5036
  • PDF Downloads:  989
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2013
  • Accepted Date:  24 September 2013
  • Published Online:  05 December 2013

/

返回文章
返回