Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on porous silicon template for nanoimprint lithography

Zhang Zheng Xu Zhi-Mou Sun Tang-You Xu Hai-Feng Chen Cun-Hua Peng Jing

Citation:

Study on porous silicon template for nanoimprint lithography

Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, Xu Hai-Feng, Chen Cun-Hua, Peng Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The template for naoimprint lithography having a nano-sized structure was usually fabricated by traditional lithography such as extreme ultraviolet (EUV) lithography, focused ion beam (FIB) lithography, electron beam (EB) lithography. However, these approaches are always time-consuming and inefficiency which limits the potential application in nanoimprint lithography. To find a simple and low-cost method to fabricate the mold for nanoimprint lithography, and to improve the application in nanoimprint lithography have become the research focus. Instead of being formed by traditional lithography, the anodic aluminum oxide (AAO), with highly regular structures and high pore density, is the mold to achieve periodic structures for nanoimprint lithography. In this work, we successfully transfer a 2D nanoporous array structure to the Si surface via the nanoimprint lithography and AAO. The pore diameter and the interpore distance of the porous silicon (PS) are well consistent with that of AAO template. The interval, the diameter, and the height of the hexagonal array structure are 350–560 nm, 170–480 nm, and 200 nm, respectively. We have tested the Raman spectrum under the excitation by lasers of wavelength 514 nm. According to the results, two samples each exhibits a peak at 520 cm-1 and no frequency shift is observed with the Si characteristic Raman peak, indicating that the PS was not extensively damaged by the ICP etching process. Raman intensity in the structured Si is almost enhanced by a factor of 12 as compared with the case on polished Si, which will greatly benefit the application of Si-based optical devices. Thus, we have realized the replica of the PS template and obtained a nanopillar soft template via the hot embossing lithography.
    • Funds: Project supported by in part by the National Natural Science Foundation of China (Grant No. 61076042), the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205), and the National High Technology Research and Development Program of China (Grant No. 2011AA03A106).
    [1]

    Torres S, Zankovych S, Seekamp J, Kam A P, Clavijo Cedeno C, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov M V, Heidari B 2003 Mat. Sci. Eng. C-Bio. S. 23 23

    [2]

    Guo L J 2007 Adv. Mater. 19 495

    [3]

    Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135

    [4]

    Lee P S, Lee O J, Hwang S K, Jung S H, Jee S E, LeeK H 2005 Chem. Mater. 17 6181

    [5]

    Masuda H, Fukuda K 1995 Science 268 1446

    [6]

    Polyakov B, Prikulis J, Grigorjeva L, Millers D, Daly B, Holmes J D, Erts D 2007 J. Phys. Conf. Ser. 61 283

    [7]

    Xu C L, Li H, Zhao G Y, Li H L 2006 Mater. Lett. 60 2335

    [8]

    Banerjee P, Perez I, Henn-Lecordier L, Lee S B, Rubloff G W 2009 Nat. Nanotechnol. 4 292

    [9]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [10]

    Aryal M, Buyukserin F, Mielczarek K, Zhao X M, Gao J M, Zakhidov A, Hu W C 2008 J. Vac. Sci. Technol. B 26 2562

    [11]

    Masuda H, Yada K, Osaka A 1998 Jpn. J. Appl. Phys. 37 L1340

    [12]

    Sun C M, Luo J, Wu L M, Zhang J Y 2010 ACS Appl. Mater. Inter. 2 1299

    [13]

    Li Y B, Zheng M J, Ma L, Shen W Z 2006 Nanotechnology 17 5101

    [14]

    Lee W, Ji R, Gosele U, Nielsch K 2006 Nat. Mater. 5 741

    [15]

    Hong S H, Han K S, Lee H, Cho J U, Kim Y K 2007 Jpn. J. Appl. Phys. 46 6375

    [16]

    Zhou W M, Zhang J, Li X L, Liu Y B, Min G Q, Song Z T, Zhang J P 2009 Appl. Surf. Sci. 255 8019

    [17]

    Zhou W M, Min G Q, Song Z T, Zhang J, Liu Y B, Zhang J P 2010 Nanotechnology 21 205304

    [18]

    Nasirpouri F, Peighambari S M 2013 Ionics 19 535

    [19]

    Dai T, Zhang B, Kang X N, Bao K, Zhao W Z, Xu D S, Zhang G Y, Gan Z Z 2008 IEEE Photonic. Tech. L. 20 1974

    [20]

    Fu X X, Zhang B, Kang X N, Deng J J, Xiong C, Dai T, Jiang X Z, Yu T J, Chen Z Z, Zhang G Y 2011 Opt. Express 19 A1104

    [21]

    Bai A Q, Hu D, Ding W C, Su S J, Hu W X, Xue C L, Fan Z C, Cheng B W, Yu Y D, Wang Q M 2009 Acta Phys. Sin. 58 4997 (in Chinese) [白安琪, 胡迪, 丁武昌, 苏少坚, 胡炜玄, 薛春来, 樊中朝, 成步文, 俞育德, 王启明 2009 物理学报 58 4997]

    [22]

    Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142

    [23]

    Wang H P, Tsai K T, Lai K Y, Wei T C, Wang Y L, He J H 2012 Opt. Express 20 A94

    [24]

    Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz J M, Hanbucken M, Bartenlian B 2011 Microelectron. Eng. 88 2444

    [25]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [26]

    Ting Y C, Shy S L 2012 Proc. of Spie 8323 83232H

  • [1]

    Torres S, Zankovych S, Seekamp J, Kam A P, Clavijo Cedeno C, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G, Gruetzner G, Maximov M V, Heidari B 2003 Mat. Sci. Eng. C-Bio. S. 23 23

    [2]

    Guo L J 2007 Adv. Mater. 19 495

    [3]

    Zhou W M, Min G Q, Zhang J, Liu Y B, Wang J H, Zhang Y P, Sun F 2011 Nano-Micro Lett. 3 135

    [4]

    Lee P S, Lee O J, Hwang S K, Jung S H, Jee S E, LeeK H 2005 Chem. Mater. 17 6181

    [5]

    Masuda H, Fukuda K 1995 Science 268 1446

    [6]

    Polyakov B, Prikulis J, Grigorjeva L, Millers D, Daly B, Holmes J D, Erts D 2007 J. Phys. Conf. Ser. 61 283

    [7]

    Xu C L, Li H, Zhao G Y, Li H L 2006 Mater. Lett. 60 2335

    [8]

    Banerjee P, Perez I, Henn-Lecordier L, Lee S B, Rubloff G W 2009 Nat. Nanotechnol. 4 292

    [9]

    Crouse D, Lo Y H, Miller A E, Crouse M 2000 Appl. Phys. Lett. 76 49

    [10]

    Aryal M, Buyukserin F, Mielczarek K, Zhao X M, Gao J M, Zakhidov A, Hu W C 2008 J. Vac. Sci. Technol. B 26 2562

    [11]

    Masuda H, Yada K, Osaka A 1998 Jpn. J. Appl. Phys. 37 L1340

    [12]

    Sun C M, Luo J, Wu L M, Zhang J Y 2010 ACS Appl. Mater. Inter. 2 1299

    [13]

    Li Y B, Zheng M J, Ma L, Shen W Z 2006 Nanotechnology 17 5101

    [14]

    Lee W, Ji R, Gosele U, Nielsch K 2006 Nat. Mater. 5 741

    [15]

    Hong S H, Han K S, Lee H, Cho J U, Kim Y K 2007 Jpn. J. Appl. Phys. 46 6375

    [16]

    Zhou W M, Zhang J, Li X L, Liu Y B, Min G Q, Song Z T, Zhang J P 2009 Appl. Surf. Sci. 255 8019

    [17]

    Zhou W M, Min G Q, Song Z T, Zhang J, Liu Y B, Zhang J P 2010 Nanotechnology 21 205304

    [18]

    Nasirpouri F, Peighambari S M 2013 Ionics 19 535

    [19]

    Dai T, Zhang B, Kang X N, Bao K, Zhao W Z, Xu D S, Zhang G Y, Gan Z Z 2008 IEEE Photonic. Tech. L. 20 1974

    [20]

    Fu X X, Zhang B, Kang X N, Deng J J, Xiong C, Dai T, Jiang X Z, Yu T J, Chen Z Z, Zhang G Y 2011 Opt. Express 19 A1104

    [21]

    Bai A Q, Hu D, Ding W C, Su S J, Hu W X, Xue C L, Fan Z C, Cheng B W, Yu Y D, Wang Q M 2009 Acta Phys. Sin. 58 4997 (in Chinese) [白安琪, 胡迪, 丁武昌, 苏少坚, 胡炜玄, 薛春来, 樊中朝, 成步文, 俞育德, 王启明 2009 物理学报 58 4997]

    [22]

    Kanamori Y, Hane K, Sai H, Yugami H 2001 Appl. Phys. Lett. 78 142

    [23]

    Wang H P, Tsai K T, Lai K Y, Wei T C, Wang Y L, He J H 2012 Opt. Express 20 A94

    [24]

    Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz J M, Hanbucken M, Bartenlian B 2011 Microelectron. Eng. 88 2444

    [25]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛 2010 物理学报 59 5851]

    [26]

    Ting Y C, Shy S L 2012 Proc. of Spie 8323 83232H

  • [1] Mu Li-Peng, Zhou Yao, Zhao Jian-Xing, Wang Li, Jiang Li, Zhou Jian-Hong. Enhancement of NaYF4:Yb3+/Er3+ up-conversion luminescence based on anodized alumina template. Acta Physica Sinica, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [2] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] Liang Ling-Ling, Zhao Yan, Feng Chao. Fabrication and ultraviolet-visible-near infrared absorption properties of silver nano arrays based on aluminum. Acta Physica Sinica, 2020, 69(6): 065201. doi: 10.7498/aps.69.20191522
    [4] Li Yan, Zhang Lin-Bin, Li Jiao, Lian Xiao-Xue, Zhu Jun-Wu. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products. Acta Physica Sinica, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
    [5] Li Yan, Li Jiao, Chen Li-Li, Lian Xiao-Xue, Zhu Jun-Wu. Polarization effect of external electric field on Raman activity and gas sensing of nano zinc oxide. Acta Physica Sinica, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [6] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, 2015, 64(13): 137102. doi: 10.7498/aps.64.137102
    [7] Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun. Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite. Acta Physica Sinica, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [8] Ma Zhi-Chao, Xu Zhi-Mou, Peng Jing, Sun Tang-You, Chen Xiu-Guo, Zhao Wen-Ning, Liu Si-Si, Wu Xing-Hui, Zou Chao, Liu Shi-Yuan. Nondestructive detection of nano grating by generalized ellipsometer. Acta Physica Sinica, 2014, 63(3): 039101. doi: 10.7498/aps.63.039101
    [9] Qin Fei-Fei, Zhang Hai-Ming, Wang Cai-Xia, Guo Cong, Zhang Jing-Jing. Design and simulation of anodic aluminum oxide nanograting double light trapping structure for thin film silicon solar cells. Acta Physica Sinica, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [10] Li Tian-Hao, Zheng Guo-Heng, Liu Chao-Ran, Xia Wei-Wei, Li Dong-Xue, Duan Zhi-Yong. Analysis of gas isolation by prominent O-ring on the mold in compressional gas cushion press nanoimprint lithography. Acta Physica Sinica, 2013, 62(6): 068103. doi: 10.7498/aps.62.068103
    [11] Zhang Zheng, Xu Zhi-Mou, Sun Tang-You, He Jian, Xu Hai-Feng, Zhang Xue-Ming, Liu Shi-Yuan. The fabrication of the antireflective periodic nano-arrary structure on Si surface using nanoimprint lithography and the study on its properties. Acta Physica Sinica, 2013, 62(16): 168102. doi: 10.7498/aps.62.168102
    [12] Wu Zhi-Guo, Zhang Peng-Ju, Xu Liang, Li Shuan-Kui, Wang Jun, Li Xu-Dong, Yan Peng-Xun. Field emission properties of amorphous carbon nanodot arrays in a novel anodic aluminum oxide template by self-assembly technique. Acta Physica Sinica, 2010, 59(1): 438-442. doi: 10.7498/aps.59.438
    [13] Duan Bao-Xing, Yang Yin-Tang. Calculation of Raman shifts of Si(1-x)Gex and amorphous silicon using Keating model. Acta Physica Sinica, 2009, 58(10): 7114-7118. doi: 10.7498/aps.58.7114
    [14] Yang Hai-Bo, Hu Ming, Zhang Wei, Zhang Xu-Rui, Li De-Jun, Wang Ming-Xia. Nanoindentation investigation of the hardness and Young’s modulus of porous silicon depending on microstructure. Acta Physica Sinica, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [15] Chen Lei-Ming, Guo Yan-Feng, Guo Xi, Tang Wei-Hua. Molds for nanoimprinting made by modified photoresist. Acta Physica Sinica, 2006, 55(12): 6511-6514. doi: 10.7498/aps.55.6511
    [16] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [17] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [18] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [20] LIANG ER-JUN, CHAO MING-JU. LASER-INDUCED LATTICE DEFORMATION OF POROUS SILICON REVEALED BY RAMAN AND PHOTOLUMINESCENCE SPECTROSCOPIES. Acta Physica Sinica, 2001, 50(11): 2241-2246. doi: 10.7498/aps.50.2241
Metrics
  • Abstract views:  6339
  • PDF Downloads:  1407
  • Cited By: 0
Publishing process
  • Received Date:  27 June 2013
  • Accepted Date:  22 September 2013
  • Published Online:  05 January 2014

/

返回文章
返回