Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulated annealing reconstruction of LiCoO2 cathode microstructure and prediction of its effective transport properties

Wu Wei Jiang Fang-Ming Zeng Jian-Bang

Citation:

Simulated annealing reconstruction of LiCoO2 cathode microstructure and prediction of its effective transport properties

Wu Wei, Jiang Fang-Ming, Zeng Jian-Bang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Reconstruction and characterization of the porous composite electrode via experimental and numerical approaches is one of the most important ingredients of mesoscopic modeling. It is also the basis and prerequisite for bottom-to-up design and optimization of electrode microstructure. In the present work, a simulated annealing approach is employed to reconstruct the LiCoO2 cathode of a commercial Li-ion battery. Important statistical characteristic parameters of the real LiCoO2 cathode, such as porosity or component volume fraction, the real size distribution curve of LiCoO2 particles, which are taken from experimental data or extracted from the source materials used to fabricate the cathode, are used to regulate the reconstruction process. The reconstructed electrode evidently distinguishes the three individual phases: LiCoO2 as active material, pores or electrolyte, and additives. An extensive characterization is subsequently performed, which calculates some important structural and transport properties, including the geometrical connectivity of an individual phase, the specific surface area, etc. Particularly, a self-developed D3Q15 LB (lattice Boltzmann) model is utilized to calculate the effective thermal (or electric) conductivity and the effective species diffusivity in electrolyte (or solid) phase, and the tortuosity of an individual phase. The LB model predictions indicate that the effective transport coefficients are closely related to the micro-morphology in electrodes and the tortuosity values assessed by LBM are more reliable than those predicted by random walk simulation or the Bruggeman equation.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51206171) and the "100 Talents" Plan of Chinese Academy of Sciences (Grant No. FJ).
    [1]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [2]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [3]

    Chen X C, Song Q, L H 2011 Marine Electr. Electron. Engineer. 31 1 (in Chinese) [陈新传, 宋强, 吕昊 2011 船电技术 31 1]

    [4]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [5]

    Wang C W, Sastry A M 2007 J. Electrochem. Soc. 154 A1035

    [6]

    Du W B, Gupta A, Zhang X C, Sastry A M, Wei S Y 2010 Int. J. Heat Mass Transfer 53 3552

    [7]

    Gupta A, Seo J H, Zhang X C, Du W B, Sastry A M, Wei S Y 2011 J. Electrochem. Soc. 158 A487

    [8]

    Spanne P, Thovert J F, Jacquin C J 1994 Phys. Rev. Lett. 73 2001

    [9]

    Yoshizawa N, Tanaike O, Hatori H 2006 Carbon 44 2558

    [10]

    Groeber M A, Haley B K, Uchic M D 2006 Mater. Cha ract. 57 259

    [11]

    Shearing P R, Golbert J, Chater R 2009 J. Chem. Eng. Sci. 64 3928

    [12]

    Xu B, Wang S L, Li L Q, Li S J 2012 Acta Phys. Sin. 61 090201 (in Chinese) [徐波, 王树林, 李来强, 李生娟 2012 物理学报 61 090201]

    [13]

    Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 6573]

    [14]

    Qin P, Lou Y W, Yang C Z, Xia B J 2006 Acta Phys. Sin. 55 1325 (in Chinese) [钦佩, 娄豫皖, 杨传铮, 夏保佳 2006 物理学报 55 1325]

    [15]

    Quiblier J 1984 J. Colloid Interface Sci. 98 84

    [16]

    Yeong C L Y, Torquato S 1998 Phys. Rev. E 57 495

    [17]

    Kim S H, Pitsch H. 2009 J. Electrochem. Soc. 156 B673

    [18]

    Čapek P, Hejtmánek V, Brabec L, Zikánová A, Kočiřík M 2008 Transport in Porous Media 76 179

    [19]

    Wu W, Jiang F M 2013 Mater. Charact. 80 62

    [20]

    Bakke S, Oren P E 1997 J. SPE 2 136

    [21]

    Stephenson D E, Walker B C, Skelton C B, Gorzkowski E P, Rowenhorst D J, Wheeler D R 2011 J. Electrochem. Soc. 158 A781

    [22]

    Wu W, Jiang F M, Chen Z, Wang Y, Zhao F G, Zeng Y Q 2013 J. Inorg. Mater. 28 1243 (in Chinese) [吴伟, 蒋方明, 陈治, 汪颖, 赵丰刚, 曾毓群 2013 无机材料学报 28 1243]

    [23]

    Zhang T 2009 Ph. D. Dissertation ( Hefei: University of Science and Technology of China) (in Chinese) [张挺 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Carson J K S, Lovatt J, Tanner D J, Cleland A C 2006 J. Food. Eng. 75 297

    [25]

    Wang J F, Carson J K, North M F, Cleland A C 2006 Int. J. Heat Mass Transfer 49 3075

    [26]

    Doyle M, Newman J, Fuller T F 1993 J. Electrochem. Soc. 140 1526

    [27]

    Das P K, Li X G, Liu Z S 2010 Appl. Energy 87 2785

    [28]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [29]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [30]

    Fan D, White R E 1991 J. Electrochem. Soc. 138 17

    [31]

    Patel K K, Paulser K M, Desilvestro J 2003 J. Power Sources 122 144

    [32]

    Thovert J F, Wary F, Adler P M 1990 J. Appl. Phys. 68 3872

    [33]

    Jiang F M, Sousa A C M 2006 Heat Mass Transfer 43 479

    [34]

    Shoshany Y, Prialnik D, Podolak M 2002 Icarus 157 219

    [35]

    Barta S, Dieska P 2002 Kovove Mater. 40 99

    [36]

    Wang M, Wang K, Pan N, Chen S 2007 Phys. Rev. E 75 036702

    [37]

    Xuan Y M, Zhao K, Li Q 2010 Heat Mass Transfer 46 1039

    [38]

    Joshi A S, Grew K N, Izzo J R, Peracchio A A, Chiu S W K 2010 J. Fuel Cell Sci. Technol. 7 011006

    [39]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer) p23

    [40]

    Zou Q, He X 1997 Phys. Fluids 9 1591

    [41]

    Wang J K, Wang M, Li Z X 2007 Int. J. Thermal Sci. 46 228

    [42]

    Ziegler D 1993 J. Stat. Phys. 71 1171

    [43]

    Hoshen J, Kopelman R 1976 Phys. Rev. B 14 3438

    [44]

    Kiyohara K, Sugino T, Asaka K 2010 J. Chem. Phys. 132 144705

    [45]

    Thorat V, Stephenson D E, Zacharias N A, Zaghib K, Harb J N, Wheeler D R 2009 J. Power Sources 188 592

    [46]

    Promentilla M A B, Sugiyama T, Hitomi T, Takeda N 2009 Cement Concrete Res. 39 548

  • [1]

    Xin X G, Shen J Q, Shi S Q 2012 Chin. Phys. B 21 128202

    [2]

    Huang Z W, Hu S J, Hou X H, Zhao L Z, Ru Q, Li W S, Zhang Z W 2010 Chin. Phys. B 19 117101

    [3]

    Chen X C, Song Q, L H 2011 Marine Electr. Electron. Engineer. 31 1 (in Chinese) [陈新传, 宋强, 吕昊 2011 船电技术 31 1]

    [4]

    Chen Y C, Xie K, Pan Y, Zheng C M, Wang H L 2011 Chin. Phys. B 20 028201

    [5]

    Wang C W, Sastry A M 2007 J. Electrochem. Soc. 154 A1035

    [6]

    Du W B, Gupta A, Zhang X C, Sastry A M, Wei S Y 2010 Int. J. Heat Mass Transfer 53 3552

    [7]

    Gupta A, Seo J H, Zhang X C, Du W B, Sastry A M, Wei S Y 2011 J. Electrochem. Soc. 158 A487

    [8]

    Spanne P, Thovert J F, Jacquin C J 1994 Phys. Rev. Lett. 73 2001

    [9]

    Yoshizawa N, Tanaike O, Hatori H 2006 Carbon 44 2558

    [10]

    Groeber M A, Haley B K, Uchic M D 2006 Mater. Cha ract. 57 259

    [11]

    Shearing P R, Golbert J, Chater R 2009 J. Chem. Eng. Sci. 64 3928

    [12]

    Xu B, Wang S L, Li L Q, Li S J 2012 Acta Phys. Sin. 61 090201 (in Chinese) [徐波, 王树林, 李来强, 李生娟 2012 物理学报 61 090201]

    [13]

    Li J, Yang C Z, Zhang X G, Zhang J, Xia B J 2009 Acta Phys. Sin. 58 6573 (in Chinese) [李佳, 杨传铮, 张熙贵, 张建, 夏保佳 2009 物理学报 58 6573]

    [14]

    Qin P, Lou Y W, Yang C Z, Xia B J 2006 Acta Phys. Sin. 55 1325 (in Chinese) [钦佩, 娄豫皖, 杨传铮, 夏保佳 2006 物理学报 55 1325]

    [15]

    Quiblier J 1984 J. Colloid Interface Sci. 98 84

    [16]

    Yeong C L Y, Torquato S 1998 Phys. Rev. E 57 495

    [17]

    Kim S H, Pitsch H. 2009 J. Electrochem. Soc. 156 B673

    [18]

    Čapek P, Hejtmánek V, Brabec L, Zikánová A, Kočiřík M 2008 Transport in Porous Media 76 179

    [19]

    Wu W, Jiang F M 2013 Mater. Charact. 80 62

    [20]

    Bakke S, Oren P E 1997 J. SPE 2 136

    [21]

    Stephenson D E, Walker B C, Skelton C B, Gorzkowski E P, Rowenhorst D J, Wheeler D R 2011 J. Electrochem. Soc. 158 A781

    [22]

    Wu W, Jiang F M, Chen Z, Wang Y, Zhao F G, Zeng Y Q 2013 J. Inorg. Mater. 28 1243 (in Chinese) [吴伟, 蒋方明, 陈治, 汪颖, 赵丰刚, 曾毓群 2013 无机材料学报 28 1243]

    [23]

    Zhang T 2009 Ph. D. Dissertation ( Hefei: University of Science and Technology of China) (in Chinese) [张挺 2009 博士学位论文 (合肥: 中国科学技术大学)]

    [24]

    Carson J K S, Lovatt J, Tanner D J, Cleland A C 2006 J. Food. Eng. 75 297

    [25]

    Wang J F, Carson J K, North M F, Cleland A C 2006 Int. J. Heat Mass Transfer 49 3075

    [26]

    Doyle M, Newman J, Fuller T F 1993 J. Electrochem. Soc. 140 1526

    [27]

    Das P K, Li X G, Liu Z S 2010 Appl. Energy 87 2785

    [28]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

    [29]

    Fuller T F, Doyle M, Newman J 1994 J. Electrochem. Soc. 141 1

    [30]

    Fan D, White R E 1991 J. Electrochem. Soc. 138 17

    [31]

    Patel K K, Paulser K M, Desilvestro J 2003 J. Power Sources 122 144

    [32]

    Thovert J F, Wary F, Adler P M 1990 J. Appl. Phys. 68 3872

    [33]

    Jiang F M, Sousa A C M 2006 Heat Mass Transfer 43 479

    [34]

    Shoshany Y, Prialnik D, Podolak M 2002 Icarus 157 219

    [35]

    Barta S, Dieska P 2002 Kovove Mater. 40 99

    [36]

    Wang M, Wang K, Pan N, Chen S 2007 Phys. Rev. E 75 036702

    [37]

    Xuan Y M, Zhao K, Li Q 2010 Heat Mass Transfer 46 1039

    [38]

    Joshi A S, Grew K N, Izzo J R, Peracchio A A, Chiu S W K 2010 J. Fuel Cell Sci. Technol. 7 011006

    [39]

    Torquato S 2002 Random Heterogeneous Materials: Microstructure and Macroscopic Properties (New York: Springer) p23

    [40]

    Zou Q, He X 1997 Phys. Fluids 9 1591

    [41]

    Wang J K, Wang M, Li Z X 2007 Int. J. Thermal Sci. 46 228

    [42]

    Ziegler D 1993 J. Stat. Phys. 71 1171

    [43]

    Hoshen J, Kopelman R 1976 Phys. Rev. B 14 3438

    [44]

    Kiyohara K, Sugino T, Asaka K 2010 J. Chem. Phys. 132 144705

    [45]

    Thorat V, Stephenson D E, Zacharias N A, Zaghib K, Harb J N, Wheeler D R 2009 J. Power Sources 188 592

    [46]

    Promentilla M A B, Sugiyama T, Hitomi T, Takeda N 2009 Cement Concrete Res. 39 548

  • [1] Chen Xiao-Peng, Feng Jun-Peng, Hu Hai-Bao, Du Peng, Wang Ti-Kang. Lattice Boltzmann method based simulation of two dimensional bubble group ripening process. Acta Physica Sinica, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [2] Lattice Boltzmann Simulation on Two Dimensional Vapour Bubble Ripening. Acta Physica Sinica, 2022, (): . doi: 10.7498/aps.71.20212183
    [3] Hu Xiao-Liang, Liang Hong, Wang Hui-Li. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] Huang Hu, Hong Ning, Liang Hong, Shi Bao-Chang, Chai Zhen-Hua. Lattice Boltzmann simulation of the droplet impact onto liquid film. Acta Physica Sinica, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [5] Zhang Ya, Pan Guang, Huang Qiao-Gao. Numerical investigation on drag reduction with hydrophobic surface by lattice Boltzmann method. Acta Physica Sinica, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [6] Liu Qiu-Zu, Kou Zi-Ming, Jia Yue-Mei, Wu Juan, Han Zhen-Nan, Zhang Qian-Qian. Wettability alteration simulation of modified hydrophobic solid surface by lattice Boltzmann method. Acta Physica Sinica, 2014, 63(10): 104701. doi: 10.7498/aps.63.104701
    [7] Ren Sheng, Zhang Jia-Zhong, Zhang Ya-Miao, Wei Ding. Phase transition in liquid due to zero-net-mass-flux jet and its numerical simulation using lattice Boltzmann method. Acta Physica Sinica, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [8] Huang Qiao-Gao, Pan Guang, Song Bao-Wei. Lattice Boltzmann simulation of slip flow and drag reduction characteristics of hydrophobic surfaces. Acta Physica Sinica, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [9] Mao Wei, Guo Zhao-Li, Wang Liang. Lattice Boltzmann simulation of the sedimentation of particles with thermal convection. Acta Physica Sinica, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [10] Liu Qiu-Zu, Kou Zi-Ming, Han Zhen-Nan, Gao Gui-Jun. Dynamic process simulation of droplet spreading on solid surface by lattic Boltzmann method. Acta Physica Sinica, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [11] Guo Ya-Li, Xu He-Han, Shen Sheng-Qiang, Wei Lan. Nanofluid Raleigh-Benard convection in rectangular cavity: simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [12] Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming. Numerical investigation of bubble nucleation process using the lattice Boltzmann method. Acta Physica Sinica, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [14] Zhang Xin-Ming, Zhou Chao-Ying, Islam Shams, Liu Jia-Qi. Three-dimensional cavitation simulation using lattice Boltzmann method. Acta Physica Sinica, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [15] Xiong Ling-Ling, Li Jian-Long, Lü Bai-Da. A novel method for simulating source-field distribution of diode laser. Acta Physica Sinica, 2009, 58(2): 975-979. doi: 10.7498/aps.58.975
    [16] Lu Yu-Hua, Zhan Jie-Min. Three-dimensional numerical simulation of thermosolutal convection in enclosures using lattice Boltzmann method. Acta Physica Sinica, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [17] Zhang Chao-Ying, Li Hua-Bing, Tan Hui-Li, Liu Mu-Ren, Kong Ling-Jiang. Lattice Boltzmann simulations of moving elliptic cylinder in a Newtonian fluid. Acta Physica Sinica, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [18] Guo Li-Ping, Cheng Zhi-Xu, Han Fu-Tian, Liu Yi, Zhao Zhi-Xiang. Simulated annealing method for powder diffraction pattern decomposition. Acta Physica Sinica, 2003, 52(11): 2842-2848. doi: 10.7498/aps.52.2842
    [19] Lü XIAO-YANG, LI HUA-BING. SIMULATION OF THERMAL VISCOUS CAVITY FLOW IN HIGH REYNOLD NUMBER BY THE LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] LI HUA-BING, HUANG PING-HUA, LIU MU-REN, KONG LING-JIANG. SIMULATION OF THE MKDV EQUATION WITH LATTICE BOLTZMANN METHOD. Acta Physica Sinica, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
Metrics
  • Abstract views:  5969
  • PDF Downloads:  1164
  • Cited By: 0
Publishing process
  • Received Date:  05 September 2013
  • Accepted Date:  15 November 2013
  • Published Online:  05 February 2014

/

返回文章
返回