Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Drag reduction mechanisms of 8-fold quasi-periodic short groove structures

Lang Sha-Sha Geng Xing-Guo Zang Du-Yang

Citation:

Drag reduction mechanisms of 8-fold quasi-periodic short groove structures

Lang Sha-Sha, Geng Xing-Guo, Zang Du-Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We design two types of 8-fold quasi-period short groove structures which are arranged in single row and three rows respectively The flow field in the turbulent boundary layer and the total stress over these groove surfaces are numerically simulated by using Reynolds average Navier-Stokes equation and turbulence model. It is shown that the 8-fold quasi-periodic structure has good drag reduction effect compared with the periodic and disorder structures, especially for structure arranged in three rows. The results are also confirmed by the sheer stress measurements which are performed on substrates with the designed structures. By analyzing the distribution of flow field, we find that the quasi-periodic structure effectively inhibits the intensity of vortex, reduces the turbulent dissipation rate, and keeps the stripe phase stable. Furthermore, by using the two-dimensional grating model, it is found that the 8-fold quasi-periodic structure can reduce spectrum intensity in the large angle direction, revealing that the inhibition of the extension of coherence disturbance waves is responsible for the drag reduction effect, which is also confirmed by the flow field analysis.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301139, 10872172), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20126102120058), and Fundamental Research Foundation of Northwestern Polytechnical University, China (Grant No. JCY20130147).
    [1]

    Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486

    [2]

    Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 物理学报 55 6470]

    [3]

    Park J Y, Ogletree D F, Salmeron M, Ribeiro R A 2006 Phys. Rev. B: Condens. Matter Mater. Phys. 74 24203

    [4]

    Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 物理学报 57 3260]

    [5]

    Yuan Y H, Yang J H 2005 Chin. Phys. 14 1683

    [6]

    Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941

    [7]

    Dong J W, Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1936

    [8]

    Dean B, Bhushan B 2012 Adv. Mech. 42 6

    [9]

    Zhang D Y, Luo Y H, Li X, Chen H W 2011 J. Hydrodyn. B 23 204

    [10]

    Hefner J N, Bushnel D M, Walsh M J 1983 Date Exchange Meeting on Viscous and Interacting Flow Field Effects Gottingen, West Germany, May 25-26, 1983 p11

    [11]

    Wang J J, Fu S, Meng G Q 2001 The Latest Progress of Turbulence Research (Beijing: Science Press) pp230-233 (in Chinese) [王晋军, 符松, 梦庆国 2001 湍流研究最新进展 (北京: 科学出版社) 第230–233页]

    [12]

    Liu Z Y, Hu H B, Song B W, Huang Q G 2009 J. Syst. Simlat. 21 6025 (in Chinese) [刘占一, 胡海豹, 宋宝维, 黄桥高 2009 系统仿真学报 21 6025]

    [13]

    Garcia-Mayoral R, Jimenez J 2011 Phil. Trans. Roy. Soc. A 369 1412

    [14]

    Choi K S 2000 Fluid Dyn. Res. 26 325

    [15]

    Nugroho B, Hutchins N, Monty J P 2013 Int. J. Heat Fluid Flow 41 90

    [16]

    EI-Samni O A, Chun H H, Yoon H S 2007 Int. J. Engineer. Sci. 45 436

    [17]

    Strand J S, Goldstein D B 2011 J. Fluid Mech. 668 267

    [18]

    Zhang Y H, Cheng Y S 1995 Acta Phys. Sin. 44 204 (in Chinese) [张玉河, 陈岩松 1995 物理学报 44 204]

    [19]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [20]

    Daniello R J, Waterhouse N E, Rothstein J P 2009 Phys. Fluids 21 085103

    [21]

    Han Z W, Zhang J Q, Chao G, Li W, Ren L Q 2011 Langmuir 28 2914

    [22]

    Moradi H V, Floryan J M 2013 J. Fluid Mech. 716 280

    [23]

    Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 物理学报 62 054701]

    [24]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [25]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 物理学报 61 194702]

    [26]

    Garc\’ia-Mayoral R, Jiménez J 2011 Phil. Trans. Soc. A 369 1414

    [27]

    Jung C Y, Bhushan B 2010 J. Phys. 22 035104

    [28]

    Xue W H, Geng X G, Li J, Li F, Wu J 2010 Chin. Phys. Lett. 27 104703

  • [1]

    Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z, Yang H F 2006 Chin. Phys. Lett. 23 486

    [2]

    Zhou P Q, Dong C H, Cao Y J 2006 Acta Phys. Sin. 55 6470 (in Chinese) [周培勤, 董纯红, 曹永军 2006 物理学报 55 6470]

    [3]

    Park J Y, Ogletree D F, Salmeron M, Ribeiro R A 2006 Phys. Rev. B: Condens. Matter Mater. Phys. 74 24203

    [4]

    Cao Y J, Yang X 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 物理学报 57 3260]

    [5]

    Yuan Y H, Yang J H 2005 Chin. Phys. 14 1683

    [6]

    Dai Y, Hu X, Song J, Yu B K, Qiu J R 2007 Chin. Phys. Lett. 24 1941

    [7]

    Dong J W, Han P, Wang H Z 2003 Chin. Phys. Lett. 20 1936

    [8]

    Dean B, Bhushan B 2012 Adv. Mech. 42 6

    [9]

    Zhang D Y, Luo Y H, Li X, Chen H W 2011 J. Hydrodyn. B 23 204

    [10]

    Hefner J N, Bushnel D M, Walsh M J 1983 Date Exchange Meeting on Viscous and Interacting Flow Field Effects Gottingen, West Germany, May 25-26, 1983 p11

    [11]

    Wang J J, Fu S, Meng G Q 2001 The Latest Progress of Turbulence Research (Beijing: Science Press) pp230-233 (in Chinese) [王晋军, 符松, 梦庆国 2001 湍流研究最新进展 (北京: 科学出版社) 第230–233页]

    [12]

    Liu Z Y, Hu H B, Song B W, Huang Q G 2009 J. Syst. Simlat. 21 6025 (in Chinese) [刘占一, 胡海豹, 宋宝维, 黄桥高 2009 系统仿真学报 21 6025]

    [13]

    Garcia-Mayoral R, Jimenez J 2011 Phil. Trans. Roy. Soc. A 369 1412

    [14]

    Choi K S 2000 Fluid Dyn. Res. 26 325

    [15]

    Nugroho B, Hutchins N, Monty J P 2013 Int. J. Heat Fluid Flow 41 90

    [16]

    EI-Samni O A, Chun H H, Yoon H S 2007 Int. J. Engineer. Sci. 45 436

    [17]

    Strand J S, Goldstein D B 2011 J. Fluid Mech. 668 267

    [18]

    Zhang Y H, Cheng Y S 1995 Acta Phys. Sin. 44 204 (in Chinese) [张玉河, 陈岩松 1995 物理学报 44 204]

    [19]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [20]

    Daniello R J, Waterhouse N E, Rothstein J P 2009 Phys. Fluids 21 085103

    [21]

    Han Z W, Zhang J Q, Chao G, Li W, Ren L Q 2011 Langmuir 28 2914

    [22]

    Moradi H V, Floryan J M 2013 J. Fluid Mech. 716 280

    [23]

    Wang X N, Geng X G, Zang D Y 2013 Acta Phys. Sin. 62 054701 (in Chinese) [王晓娜, 耿兴国, 臧渡洋 2013 物理学报 62 054701]

    [24]

    Gao P, Geng X G, Ou X L, Xue W H 2009 Acta Phys. Sin. 58 421 (in Chinese) [高鹏, 耿兴国, 欧修龙, 薛文辉 2009 物理学报 58 421]

    [25]

    Zhang M, Geng X G, Zhang Y, Wang X N 2012 Acta Phys. Sin. 61 194702 (in Chinese) [张盟, 耿兴国, 张瑶, 王晓娜 2006 物理学报 61 194702]

    [26]

    Garc\’ia-Mayoral R, Jiménez J 2011 Phil. Trans. Soc. A 369 1414

    [27]

    Jung C Y, Bhushan B 2010 J. Phys. 22 035104

    [28]

    Xue W H, Geng X G, Li J, Li F, Wu J 2010 Chin. Phys. Lett. 27 104703

  • [1] Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie. Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [2] Liu Zhong-Lei, Cao Jin-Ming, Wang Zhi, Zhao Yu-Hong. Phase-field method explored ferroelectric vortex topology structure and morphotropic phase boundaries. Acta Physica Sinica, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [3] Yuan Yong-Hao, Xue Qi-Kun, Li Wei. Stripe phase in high-Tc superconductor FeSe/SrTiO3. Acta Physica Sinica, 2022, 71(12): 127304. doi: 10.7498/aps.71.20220118
    [4] Guo Guang-Ming, Zhu Lin, Xing Bo-Yang. Density distribution characteristics of fluid inside vortex in supersonic mixing layer. Acta Physica Sinica, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [5] Chai Zhen-Xia, Liu Wei, Yang Xiao-Liang, Zhou Yun-Long. Application of variable-time-period harmonic balance method to periodic unsteady vortex shedding. Acta Physica Sinica, 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [6] Liu Ying, Chen Zhi-Hua, Zheng Chun. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid. Acta Physica Sinica, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [7] Wang Guang-Xue, Wang Sheng-Ye, Ge Ming-Ming, Deng Xiao-Gang. High-order delay detached-eddy simulations of cylindrical separated vortex/vortex induced noise based on transition model and acoustic analogy. Acta Physica Sinica, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [8] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Qing-Bing. Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing. Acta Physica Sinica, 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [9] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [10] Guo Guang-Ming, Liu Hong, Zhang Bin, Zhang Zhong-Yang, Zhang Qing-Bing. Characteristics of convective speeds of vortex structures in mixing layer. Acta Physica Sinica, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [11] Liu Jing, Wu Yu, Gao Yong. Research on SiGe heterojunction bipolar transistor with a trench-type emitter. Acta Physica Sinica, 2014, 63(14): 148503. doi: 10.7498/aps.63.148503
    [12] Wu Wen-Tang, Hong Yan-Ji, Fan Bao-Chun. Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force. Acta Physica Sinica, 2014, 63(5): 054702. doi: 10.7498/aps.63.054702
    [13] Chen Yun-Xiang, Chen Ke, You Yun-Xiang, Hu Tian-Qun. Numerical investigation on the characteristics of the mushroom-like vortex structure generated by a submerged laminar round jet. Acta Physica Sinica, 2013, 62(11): 114701. doi: 10.7498/aps.62.114701
    [14] Wang Xiao-Na, Geng Xing-Guo, Zang Du-Yang. Drag-reduction of one-dimensional period and puasiperiod groove structures. Acta Physica Sinica, 2013, 62(5): 054701. doi: 10.7498/aps.62.054701
    [15] Zhang Meng, Geng Xing-Guo, Zhang Yao, Wang Xiao-Na. Mechanism analysis of one-dimensional short groove quasicrystal structure drag-reduction. Acta Physica Sinica, 2012, 61(19): 194702. doi: 10.7498/aps.61.194702
    [16] Zhu Min-Hui, Wang Xiao-Qing, Chen Ke, You Yun-Xiang, Hu Tian-Qun. Experiments on quasi-two-dimensional dipolar vortex streets generated by a moving momentum source in a stratified fluid. Acta Physica Sinica, 2011, 60(2): 024702. doi: 10.7498/aps.60.024702
    [17] Sun Ming-Zhao, Zhang Chun-Min, Sun Xiao-Ping. Octagonal split resonant rings composite metal-wires to realize negative refraction. Acta Physica Sinica, 2010, 59(8): 5444-5449. doi: 10.7498/aps.59.5444
    [18] Liao Long-Guang, Fu Hong, Fu Xiu-Jun. Self-similar transformation and quasi-unit cell construction of quasi-periodic structure with twelve-fold rotational symmetry. Acta Physica Sinica, 2009, 58(10): 7088-7093. doi: 10.7498/aps.58.7088
    [19] Cai Qi-Fa, Huang Si-Xun, Gao Shou-Ting, Zhong Ke, Li Zi-Qiang. A new method for calculating vorticity. Acta Physica Sinica, 2008, 57(6): 3912-3919. doi: 10.7498/aps.57.3912
    [20] Liu Ming-Hua, Yu Si-Min. Multi-scroll high-order general Jerk circuits. Acta Physica Sinica, 2006, 55(11): 5707-5713. doi: 10.7498/aps.55.5707
Metrics
  • Abstract views:  4940
  • PDF Downloads:  640
  • Cited By: 0
Publishing process
  • Received Date:  14 October 2013
  • Accepted Date:  14 January 2014
  • Published Online:  05 April 2014

/

返回文章
返回