Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Runaway electron beams in nanosecond-pulse discharges

Zhang Cheng Ma Hao Shao Tao Xie Qing Yang Wen-Jin Yan Ping

Citation:

Runaway electron beams in nanosecond-pulse discharges

Zhang Cheng, Ma Hao, Shao Tao, Xie Qing, Yang Wen-Jin, Yan Ping
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Conventional discharge (Townsend and streamer mechanisms) theories are not able to well explain the phenomenon in nanosecond-pulse discharges. Recently, much attention has been paid to the runaway breakdown due to high-energy electrons in nanosecond-pulse discharges, and some experimental data confirm that high-energy runaway electron beam is an important characteristic parameter for nanosecond-pulse discharges. In this paper, two designed collectors are used for detecting runaway electron beams in nanosecond-pulse discharges. These collectors are used to measure the runaway electron beams in discharges driven by a nanosecond-pulse generator with a pulse width of 3-5 ns and a rise time of 1.2-1.6 ns. The measuring principle of both two collectors is similar to that of Faraday cup, where high-energy electrons are collected by a metal cone, and converted into an electric signal that can be recorded by an oscilloscope. Furthermore, optimal designs of collectors are conducted in order to improve the impedance matching characteristics and to obtain better recording data. Using the above two collectors, characteristics of runaway electron beams are investigated. Experimental results show that runaway electron beams can be effectively measured by the collectors, and the optimized collector has a shorter time resolution and higher amplitude of the runaway electron beam current. When the applied voltage is 80 kV, the electron beam current can be measured with an amplitude of 160 mA and a full width at half maximum of less than 1 ns. In addition, experimental results with pulse sequences prove that the collectors have excellent reliability, and both the transient response and the time resolution are stable.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51207154, 51222701), the National Basic Research Program of China (Grant No. 2014CB239505), and State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, China (Grant No. LAPS14009).
    [1]

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学 力学 天文学 41 801]

    [2]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]

    [3]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703 (in Chinese) [李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703]

    [4]

    Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201

    [5]

    Zhang C, Shao T, Tarasenko V F, Ma H, Ren C Y, Kostyrya I D, Zhang D D, Yan P 2012 Phys. Plasmas 19 123516

    [6]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 物理学报 62 224702]

    [7]

    Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 物理学报 62 135204]

    [8]

    Shao T, Zhang C, Long K H, Wang J, Zhang D D, Yan P 2013 Chin. Phys. B 19 040601

    [9]

    Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 物理学报 61 230504]

    [10]

    Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282

    [11]

    Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069

    [12]

    Babich L P 2005 Sov. Phys. Usp. 48 1015

    [13]

    Vasilyak L M, Vetchinin S P, Polyakov D N 1999 Tech. Phys. Lett. 25 749

    [14]

    Lu H W, Zha X J, Hu L Q, Lin S Y, Zhou R J, Luo J R, Zhong F C 2012 Acta Phys. Sin. 61 075202 (in Chinese) [卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川 2012 物理学报 61 075202]

    [15]

    Alekseev S B, Orlovskii V M, Tarasenko V F 2003 Tech. Phys. Lett. 29 411

    [16]

    Zhang C, Tarasenko V F, Shao T, Baksht E Kh, Burachenko A G, Yan P, Kostyray I D 2013 Laser Part. Beams 31 353

    [17]

    Mesyats G A, Reutova A G, Sharypov K A, Shpak V G, Shunailov S A, Yalandin M I 2011 Laser Part. Beams 29 425

    [18]

    Babich L P, Loiko T V 2010 Plasma Phys. Rep. 36 263

    [19]

    Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepov M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201

    [20]

    Tarasenko V F, Kostyrya I D, Baksht E K, Rybka D V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1250

    [21]

    Alekseev S B, Lomaev M I, Rybka D V, Tarasenko V F, Shao T, Zhang C, Yan P 2013 High Voltage Engineering 39 2112

    [22]

    Alekseev S B, Baksht E K, Rybka D V, Tarasenko V F 2013 IEEE Trans. Plasma Sci. 41 2201

    [23]

    Tarasenko V F, Rybka D V, Burachenko A G, Lomaev M I, Balzovsky E V 2012 Rev. Sci. Instrum. 83 086106

    [24]

    Rybka D V, Tarasenko V F, Burachenko A G, Balzovskii E V 2012 Tech. Phys. Lett. 38 653

    [25]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E Kh, Burachenko A G, Shutko Y V 2011 Appl. Phys. Lett. 98 021503

    [26]

    Zhang C, Gu J W, Shao T, Ma H, Yan P 2014 High Power Laser and Particle Beams 26 045029 (in Chinese) [章程, 顾建伟, 邵涛, 马浩, 严萍 2014 强激光与粒子束 26 045029]

    [27]

    Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Yan P 2013 J. Appl. Phys. 113 093301

    [28]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [29]

    Zhang C, Shao T, Yu Y, Niu Z, Yan P, Zhou Y 2010 Rev. Sci. Instrum. 31 123501

    [30]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E K, Kostyrya I D, Shutko V 2011 J. Appl. Phys. 109 083306

    [31]

    Zhang C, Shao T, Yan P, Tarasenko V F 2013 High Voltage Engineering 39 2095

    [32]

    Burachenko A G, Tarasenko V F 2010 Tech. Phys. Lett. 36 1158

    [33]

    Tarasenko V F, Yakovlenko S I 2004 Phys. Usp. 47 887

    [34]

    Zhang C, Shao T, Ma H, Zhang D, Ren C, Yan P, Tarasenko V, Schamiloglu E 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304

  • [1]

    Lu X P, Yan P, Ren C S, Shao T 2011 Sci. China: Phys. Mech. Astron. 41 801 (in Chinese) [卢新培, 严萍, 任春生, 邵涛 2011 中国科学: 物理学 力学 天文学 41 801]

    [2]

    Shao T, Sun G S, Yan P, Gu C, Zhang S C 2006 Acta Phys. Sin. 55 5964 (in Chinese) [邵涛, 孙广生, 严萍, 谷琛, 张适昌 2006 物理学报 55 5964]

    [3]

    Li Y, Mu H B, Deng J B, Zhang G J, Wang S H 2013 Acta Phys. Sin. 62 124703 (in Chinese) [李元, 穆海宝, 邓军波, 张冠军, 王曙鸿 2013 物理学报 62 124703]

    [4]

    Yu J L, He L M, Ding W, Wang Y Q, Du C 2013 Chin. Phys. B 22 055201

    [5]

    Zhang C, Shao T, Tarasenko V F, Ma H, Ren C Y, Kostyrya I D, Zhang D D, Yan P 2012 Phys. Plasmas 19 123516

    [6]

    Che X K, Nie W S, Zhou P H, He H B, Tian X H, Zhou S Y 2013 Acta Phys. Sin. 62 224702 (in Chinese) [车学科, 聂万胜, 周朋辉, 何浩波, 田希晖, 周思引 2013 物理学报 62 224702]

    [7]

    Dai D, Wang Q M, Hao Y B 2013 Acta Phys. Sin. 62 135204 (in Chinese) [戴栋, 王其明, 郝艳捧 2013 物理学报 62 135204]

    [8]

    Shao T, Zhang C, Long K H, Wang J, Zhang D D, Yan P 2013 Chin. Phys. B 19 040601

    [9]

    Wang X Q, Dai D, Hao Y B, Li L C 2012 Acta Phys. Sin. 61 230504 (in Chinese) [王敩青, 戴栋, 郝艳捧, 李立浧 2012 物理学报 61 230504]

    [10]

    Mesyats G A, Bychkov Y I, Kremnev V V 1972 Sov. Phys. Usp. 15 282

    [11]

    Kunhardt E E, Byszewski W W 1980 Phys. Rev. A 21 2069

    [12]

    Babich L P 2005 Sov. Phys. Usp. 48 1015

    [13]

    Vasilyak L M, Vetchinin S P, Polyakov D N 1999 Tech. Phys. Lett. 25 749

    [14]

    Lu H W, Zha X J, Hu L Q, Lin S Y, Zhou R J, Luo J R, Zhong F C 2012 Acta Phys. Sin. 61 075202 (in Chinese) [卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川 2012 物理学报 61 075202]

    [15]

    Alekseev S B, Orlovskii V M, Tarasenko V F 2003 Tech. Phys. Lett. 29 411

    [16]

    Zhang C, Tarasenko V F, Shao T, Baksht E Kh, Burachenko A G, Yan P, Kostyray I D 2013 Laser Part. Beams 31 353

    [17]

    Mesyats G A, Reutova A G, Sharypov K A, Shpak V G, Shunailov S A, Yalandin M I 2011 Laser Part. Beams 29 425

    [18]

    Babich L P, Loiko T V 2010 Plasma Phys. Rep. 36 263

    [19]

    Baksht E H, Burachenko A G, Kostyrya I D, Lomaev M I, Rybka D V, Shulepov M A, Tarasenko V F 2009 J. Phys. D: Appl. Phys. 42 185201

    [20]

    Tarasenko V F, Kostyrya I D, Baksht E K, Rybka D V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 1250

    [21]

    Alekseev S B, Lomaev M I, Rybka D V, Tarasenko V F, Shao T, Zhang C, Yan P 2013 High Voltage Engineering 39 2112

    [22]

    Alekseev S B, Baksht E K, Rybka D V, Tarasenko V F 2013 IEEE Trans. Plasma Sci. 41 2201

    [23]

    Tarasenko V F, Rybka D V, Burachenko A G, Lomaev M I, Balzovsky E V 2012 Rev. Sci. Instrum. 83 086106

    [24]

    Rybka D V, Tarasenko V F, Burachenko A G, Balzovskii E V 2012 Tech. Phys. Lett. 38 653

    [25]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E Kh, Burachenko A G, Shutko Y V 2011 Appl. Phys. Lett. 98 021503

    [26]

    Zhang C, Gu J W, Shao T, Ma H, Yan P 2014 High Power Laser and Particle Beams 26 045029 (in Chinese) [章程, 顾建伟, 邵涛, 马浩, 严萍 2014 强激光与粒子束 26 045029]

    [27]

    Shao T, Tarasenko V F, Zhang C, Baksht E K, Zhang D, Erofeev M V, Yan P 2013 J. Appl. Phys. 113 093301

    [28]

    Zhang C, Shao T, Niu Z, Zhang D D, Wang J, Yan P 2012 Acta Phys. Sin. 61 035202 (in Chinese) [章程, 邵涛, 牛铮, 张东东, 王珏, 严萍 2012 物理学报 61 035202]

    [29]

    Zhang C, Shao T, Yu Y, Niu Z, Yan P, Zhou Y 2010 Rev. Sci. Instrum. 31 123501

    [30]

    Shao T, Zhang C, Niu Z, Yan P, Tarasenko V F, Baksht E K, Kostyrya I D, Shutko V 2011 J. Appl. Phys. 109 083306

    [31]

    Zhang C, Shao T, Yan P, Tarasenko V F 2013 High Voltage Engineering 39 2095

    [32]

    Burachenko A G, Tarasenko V F 2010 Tech. Phys. Lett. 36 1158

    [33]

    Tarasenko V F, Yakovlenko S I 2004 Phys. Usp. 47 887

    [34]

    Zhang C, Shao T, Ma H, Zhang D, Ren C, Yan P, Tarasenko V, Schamiloglu E 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1304

  • [1] Xiao Jiang-Ping, Dai Dong, Victor F. Tarasenko, Shao Tao. Mechanism of runaway electron generation in nanosecond pulsed plate-plate discharge at atmospheric-pressure air. Acta Physica Sinica, 2023, 72(10): 105201. doi: 10.7498/aps.72.20222409
    [2] Li Yuan, Li Lin-Bo, Wen Jia-Ye, Ni Zheng-Quan, Zhang Guan-Jun. Initiation of nanosecond-pulsed discharge in water: Electrostriction effect. Acta Physica Sinica, 2021, 70(2): 024701. doi: 10.7498/aps.70.20201048
    [3] Hou Xing-Min, Zhang Cheng, Qiu Jin-Tao, Gu Jian-Wei, Wang Rui-Xue, Shao Tao. Properties of temporal X-ray in nanosecond-pulse discharges with a tube-to-plane gap at atmospheric pressure. Acta Physica Sinica, 2017, 66(10): 105204. doi: 10.7498/aps.66.105204
    [4] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [5] Bai Zhan-Guo, Li Xin-Zheng, Li Yan, Zhao Kun. Numerical analysis on multi-armed spiral patterns in gas discharge system. Acta Physica Sinica, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [6] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [7] Bi Xue-Song, Zhu Liang, Yang Fu-Long. Mechanism of current injection in the process of wire electrical explosion. Acta Physica Sinica, 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [8] He Ya-Feng, Feng Xiao-Min, Zhang Liang. Control of the spatiotemporal pattern with time delayed feedback in a gas discharge system. Acta Physica Sinica, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [9] Wu Jin-Ze, Tang Jin-E, Dong You-Er, Zhang Guo-Feng, Wang Yan-Hua. Experimental and theoretical studies on gas discharge and plasma oscillation at atmospheric pressure. Acta Physica Sinica, 2012, 61(19): 195208. doi: 10.7498/aps.61.195208
    [10] Zhang Cheng, Shao Tao, Niu Zheng, Zhang Dong-Dong, Wang Jue, Yan Ping. X-ray generation in repetitive pulsed discharge in atmospheric air with a point-to-plane gap. Acta Physica Sinica, 2012, 61(3): 035202. doi: 10.7498/aps.61.035202
    [11] Guan Qing-Feng, Gu Qian-Qian, Li Yan, Qiu Dong-Hua, Peng Dong-Jin, Wang Xue-Tao. Microstructures in polycrystalline pure copper induced by high-current pulsed electron beamdeformation structures. Acta Physica Sinica, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [12] Zou Hui, Jing Hong-Yang, Wamg Zhi-Ping, Guan Qing-Feng. The vacancy defect clusters in polycrystalline pure nickle induced by high-current pulsed electron beam. Acta Physica Sinica, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [13] Lü Xiao-Gui, Ren Chun-Sheng, Ma Teng-Cai, Zhu Hai-Long, Qian Mu-Yang, Wang De-Zhen. Influence of quartz tube on the nanosecond pulsed discharge in a cone-to-plane air gap. Acta Physica Sinica, 2010, 59(11): 7917-7921. doi: 10.7498/aps.59.7917
    [14] Guan Qing-Feng, Cheng Du-Qing, Qiu Dong-Hua, Zhu Jian, Wang Xue-Tao, Cheng Xiu-Wei. The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [15] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [16] Xie Xu-Dong, Wang Xiao, Zhu Qi-Hua, Zeng Xiao-Ming, Wang Feng-Rui, Huang Xiao-Jun, Zhou Kai-Nan, Wang Fang, Jiang Dong-Bin, Huang Zheng, Sun Li, Liu Hua, Wang Xiao-Dong, Deng Wu, Guo Yi, Zhang Xiao-Mi. High energy chirped pulse characteristics observed by spectral-resolved streak camera. Acta Physica Sinica, 2007, 56(11): 6463-6467. doi: 10.7498/aps.56.6463
    [17] Guo Wen-Qiong, Zhou Xiao-Jun, Zhang Xiong-Jun, Sui Zhan, Wu Deng-Sheng. Simulation electro-optic switch of plasma-electrode Pockels cells driven by one-pulse process. Acta Physica Sinica, 2006, 55(7): 3519-3523. doi: 10.7498/aps.55.3519
    [18] Shao Tao, Sun Guang-Sheng, Yan Ping, Gu Chen, Zhang Shi-Chang. Calculation on runaway process of high-energy fast electrons under nanosecond-pulse. Acta Physica Sinica, 2006, 55(11): 5964-5968. doi: 10.7498/aps.55.5964
    [19] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [20] JIANG XING-LIU, CHEN KE-FAN, PIAO YU-BO. A NEW TYPE OF PULSED ELECTRON AND ION SOURCE WITH A DURATION OF NANOSECONDS. Acta Physica Sinica, 1983, 32(10): 1344-1348. doi: 10.7498/aps.32.1344
Metrics
  • Abstract views:  5405
  • PDF Downloads:  1141
  • Cited By: 0
Publishing process
  • Received Date:  13 December 2013
  • Accepted Date:  16 January 2014
  • Published Online:  05 April 2014

/

返回文章
返回