Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A THz polarization splitter made from suspended dual-core porous fiber

Li Shan-Shan Chang Sheng-Jiang Zhang Hao Bai Jin-Jun Liu Wei-Wei

Citation:

A THz polarization splitter made from suspended dual-core porous fiber

Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A low loss broadband THz polarization splitter made from suspended dual-core porous fiber is proposed. The property of low loss is due to the porous structure of the fiber, and the match of single polarization mode is achieved by the orthogonal relationship of the microstructure in the two fiber cores. Structure of the fiber is designed by using index converse matching coupling method. Numerical simulation is carried out by employing full vector finite element method. The background material is cyclo olefin polymer COC with low loss property in THz region. Firstly, the properties of a suspended porous fiber with a single core has been analyzed in detail, including the effective refractive index, birefringence, fraction of modal power in air, and material absorption loss in the fundamental mode. Moreover, the properties of THz polarization splitter made from suspended dual-core porous fibers have been investigated theoretically. Numerical simulation results show that the operation bandwidth is 1.5 THz (from 0.8 THz to 2.3 THz). At 1 THz, the splitting length is only 0.66 cm. The extinction ratios for x and y polarization modes can reach -14.64 dB and -14.84 dB, respectively. The practical material absorption loss is less than 0.12 dB for both x and y polarization modes. Compared with other dual-core-PCF-based polarization splitters, the dual-core porous fiber has several advantages such as simplicity for structure designing, ease of fabrication, better feasibility in practical applications, low transmission loss, and wide operation frequency bandwidth.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339800), the National High Technology Research and Development Program of China (Grant Nos. 2011AA010205, 2013AA014201), the National Natural Science Foundation of China (Grant Nos. 61171027, 11274182, 11004110), the Science and Technology Program of Tianjin, China (Grant No. 13RCGFGX01127), and the Tianjin City High School Science & Technology Fund Planning Project, China (Grant No. 20120706).
    [1]

    Li J, Mao Y, Lu C, Tam H Y, Wai P 2011 Photonics Technology Letters, IEEE 23 1358

    [2]

    Saulnier J, Ramus C, Huet F, Carre M 1991 Photonics Technology Letters, IEEE 3 926

    [3]

    Li M Y, Gu P F 2005 Acta Phys. Sin. 54 2363 (in Chinese) [李明宇, 顾培夫 2005 物理学报 54 2363]

    [4]

    Li Y Y, Gu P F, Li M Y 2005 Acta Phys. Sin. 54 3893 (in Chinese) [厉以宇, 顾培夫, 李明宇 2005 物理学报 54 3893]

    [5]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229 (in Chinese) [娄淑琴, 任国斌, 延凤平, 简水生 2005 物理学报 54 1229]

    [6]

    Zhang B, Tan X L, Xue R Q, Yan J, Pan B, Jiang W X 2012 Infrared and Laser Engineering 41 745 (in Chinese)[张斌, 谭晓玲, 薛睿秋, 严俊, 潘播, 蒋文晓 2012 红外与激光工程 41 745]

    [7]

    Li S, Zhang H, Hou Y, Bai J, Liu W, Chang S 2013 Appl. Opt. 52 3305

    [8]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [9]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 物理学报 57 7747]

    [10]

    Liu J L, Zhang X C 2010 Physics 39 6 (in Chinese)[刘晶乐, 张希成 2010 物理 39 6]

    [11]

    Zhang X B, Shi W 2008 Acta Phys. Sin. 57 4984 (in Chinese) [张显斌, 卫施 2008 物理学报 57 4984]

    [12]

    Atakaramians S, Afshar Vahid S, Fischer B M, Abbott D, Monro T M 2008 Optics Express 16 8845

    [13]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Applied Physics Letters 92 071101

    [14]

    Dupuis A, Allard J F, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012

    [15]

    Dupuis A, Mazhorova A, Desevedavy F, Skorobogatiy M 2010 35th Internatial Cference on

    [16]

    Li M J, Shi Z D, Lin J Q, Ge Q 2010 Acta Optica Sinica 30 1950 (in Chinese) [李铭佳, 石志东, 林建强, 葛泉 2010 光学学报 30 1950]

    [17]

    Wang D, Wang L 2011 Optics Communications 284 5568

    [18]

    Chen N N, Liang J, Ren L Y 2013 Applied Optics 52 5297

    [19]

    Wang D, Zheng Y 2013 Acta Optica Sinica 33 0806005 (in Chinese) [王丹, 郑义 2013 光学学报 33 0806005]

    [20]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J, Jen A K Y, Williams J C, Twieg R J 2011 Journal of Applied Physics 109 043505

    [21]

    Emiliyanov G, Jensen J B, Bang O, Hoiby P E, Pedersen L H, Kjær E M, Lindvold L 2006 Presented at Optical Fiber Sensors

    [22]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [23]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

  • [1]

    Li J, Mao Y, Lu C, Tam H Y, Wai P 2011 Photonics Technology Letters, IEEE 23 1358

    [2]

    Saulnier J, Ramus C, Huet F, Carre M 1991 Photonics Technology Letters, IEEE 3 926

    [3]

    Li M Y, Gu P F 2005 Acta Phys. Sin. 54 2363 (in Chinese) [李明宇, 顾培夫 2005 物理学报 54 2363]

    [4]

    Li Y Y, Gu P F, Li M Y 2005 Acta Phys. Sin. 54 3893 (in Chinese) [厉以宇, 顾培夫, 李明宇 2005 物理学报 54 3893]

    [5]

    Lou S Q, Ren G B, Yan F P, Jian S S 2005 Acta Phys. Sin. 54 1229 (in Chinese) [娄淑琴, 任国斌, 延凤平, 简水生 2005 物理学报 54 1229]

    [6]

    Zhang B, Tan X L, Xue R Q, Yan J, Pan B, Jiang W X 2012 Infrared and Laser Engineering 41 745 (in Chinese)[张斌, 谭晓玲, 薛睿秋, 严俊, 潘播, 蒋文晓 2012 红外与激光工程 41 745]

    [7]

    Li S, Zhang H, Hou Y, Bai J, Liu W, Chang S 2013 Appl. Opt. 52 3305

    [8]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [9]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 物理学报 57 7747]

    [10]

    Liu J L, Zhang X C 2010 Physics 39 6 (in Chinese)[刘晶乐, 张希成 2010 物理 39 6]

    [11]

    Zhang X B, Shi W 2008 Acta Phys. Sin. 57 4984 (in Chinese) [张显斌, 卫施 2008 物理学报 57 4984]

    [12]

    Atakaramians S, Afshar Vahid S, Fischer B M, Abbott D, Monro T M 2008 Optics Express 16 8845

    [13]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Applied Physics Letters 92 071101

    [14]

    Dupuis A, Allard J F, Morris D, Stoeffler K, Dubois C, Skorobogatiy M 2009 Opt. Express 17 8012

    [15]

    Dupuis A, Mazhorova A, Desevedavy F, Skorobogatiy M 2010 35th Internatial Cference on

    [16]

    Li M J, Shi Z D, Lin J Q, Ge Q 2010 Acta Optica Sinica 30 1950 (in Chinese) [李铭佳, 石志东, 林建强, 葛泉 2010 光学学报 30 1950]

    [17]

    Wang D, Wang L 2011 Optics Communications 284 5568

    [18]

    Chen N N, Liang J, Ren L Y 2013 Applied Optics 52 5297

    [19]

    Wang D, Zheng Y 2013 Acta Optica Sinica 33 0806005 (in Chinese) [王丹, 郑义 2013 光学学报 33 0806005]

    [20]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H, Luo J, Jen A K Y, Williams J C, Twieg R J 2011 Journal of Applied Physics 109 043505

    [21]

    Emiliyanov G, Jensen J B, Bang O, Hoiby P E, Pedersen L H, Kjær E M, Lindvold L 2006 Presented at Optical Fiber Sensors

    [22]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [23]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

  • [1] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [2] Zhu Zhao-Zhao, Feng Zheng, Cai Jian-Wang. Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] Yang Ze-Hao, Liu Zi-Wei, Yang Bo, Zhang Cheng-Long, Cai Chen, Qi Zhi-Mei. Performance simulation of terahertz waveguide resonance biochemical sensor based on nanoporous gold films. Acta Physica Sinica, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [4] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [5] Hui Zhan-Qiang, Gao Li-Ming, Liu Rui-Hua, Han Dong-Dong, Wang Wei. Dual-core negative curvature fiber-based terahertz polarization beam splitter with ultra-low loss and wide bandwidth. Acta Physica Sinica, 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [6] Field-free spintronic terahertz emitters based on IrMn/Fe/Pt exchage bias heterostructures. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211831
    [7] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] Dual-core Negative Curvature Fiber-based Terahertz Polarization Beam Splitter with Ultra-low Loss and Wide Bandwidth. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211650
    [9] Zhang Yao, Sun Shuai, Yan Zhong-Bao, Zhang Guo, Shi Wei, Sheng Quan, Fang Qiang, Zhang Jun-Xiang, Shi Chao-Du, Zhang Gui-Zhong, Yao Jian-Quan. Design and coupling characteristics of terahertz dual-core anti-resonant fiber. Acta Physica Sinica, 2020, 69(20): 208703. doi: 10.7498/aps.69.20200662
    [10] Fu Ya-Nan, Zhang Xin-Qun, Zhao Guo-Zhong, Li Yong-Hua, Yu Jia-Yi. A broadband polarization converter based on resonant ring in terahertz region. Acta Physica Sinica, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [11] Wang Jing-Li, Liu Yang, Zhong Kai. Dual-core terahertz polarization splitter based on porous fibers with near-tie units. Acta Physica Sinica, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [12] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [13] Li Shan-Shan, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei, Chang Sheng-Jiang. Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method. Acta Physica Sinica, 2015, 64(15): 154201. doi: 10.7498/aps.64.154201
    [14] Jiang Zi-Wei, Bai Jin-Jun, Hou Yu, Wang Xiang-Hui, Chang Sheng-Jiang. Terahertz dual air core fiber directional coupler. Acta Physica Sinica, 2013, 62(2): 028702. doi: 10.7498/aps.62.028702
    [15] Dai Yu-Han, Chen Xiao-Lang, Zhao Qiang, Zhang Ji-Hua, Chen Hong-Wei, Yang Chuan-Ren. Tunable split ring resonators in terahertz band. Acta Physica Sinica, 2013, 62(6): 064101. doi: 10.7498/aps.62.064101
    [16] Liu Jian-Feng, Zhou Qing-Li, Shi Yu-Lei, Li Lei, Zhao Dong-Mei, Zhang Cun-Lin. The effect of substrate on terahertz transmission properties through metal subwavelength dual-ring structure. Acta Physica Sinica, 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [17] Bai Jin-Jun, Wang Chang-Hui, Hou Yu, Fan Fei, Chang Sheng-Jiang. Terahertz dual-core photonic band-gap fiber directional coupler. Acta Physica Sinica, 2012, 61(10): 108701. doi: 10.7498/aps.61.108701
    [18] Bai Jin-Jun, Wang Chang-Hui, Huo Bing-Zhong, Wang Xiang-Hui, Chang Sheng-Jiang. A broadband low loss and high birefringence terahertz photonic bandgap photonic crystal fiber. Acta Physica Sinica, 2011, 60(9): 098702. doi: 10.7498/aps.60.098702
    [19] Fan Fei, Guo Zhan, Bai Jin-Jun, Wang Xiang-Hui, Chang Sheng-Jiang. Magnetically tunable magneto-photonic crystals for multifunctional terahertz polarization controller. Acta Physica Sinica, 2011, 60(8): 084219. doi: 10.7498/aps.60.084219
    [20] Meng Tian-Hua, Zhao Guo-Zhong, Zhang Cun-Lin. Study of enhanced transmission of terahertz radiation through subwavelength fractals structures. Acta Physica Sinica, 2008, 57(6): 3846-3852. doi: 10.7498/aps.57.3846
Metrics
  • Abstract views:  5681
  • PDF Downloads:  823
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2013
  • Accepted Date:  21 February 2014
  • Published Online:  05 June 2014

/

返回文章
返回