Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube

Yang Cheng-Bing Xie Hui Liu Chao

Citation:

Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube

Yang Cheng-Bing, Xie Hui, Liu Chao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The velocity of lithium iron across the entrance of carbon nanotube VLi is an important factor for the charge performance of lithium iron battery. The molecular dynamics simulation is adopted to evaluate the effects of control factors which include electric strength, functional group type, the diameter of carbon nanotube and temperature. By the L16(45) orthogonal array method, the simulations are carried out. The order of influences of control factors is electric filed intensity > functional group > diameter > temperature. Within the ranges of the control factors studied in this work, VLi increases with increasing the diameter of carbon nanotube and electric field strength. VLi decreases with successively modifying the functional groups at the end of carbon nanotube into -H, -OH, -NH2 and -COOH. With the increasing of temperature, VLi first increases then decreases, but on the whole its change is not big.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51206195), the Natural Science Foundation of Chongqing, China (Grant No. cstc2013jcyjA90009), and the Fundamental Research Fund for the Central Universities, China (Grant No. CDJZR12110033).
    [1]

    Scrosati B, Garche J 2010 Power Sources 195 2419

    [2]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 Alloy. Compd. 575 246

    [3]

    Landi B J, Ganter M J, Cress C D, DiLeo R A, Raffaelle R P 2009 Energy Environ. Sci. 2 638

    [4]

    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K 2000 Carbon 38 183

    [5]

    Stura E, Nicolini C 2006 Anal. Chim. Acta 568 57

    [6]

    Suo L, Hu Y, Li H, Armand M, Chen L 2013 Nat. Commun. 4 1481

    [7]

    Su J, Guo H 2011 Chem. Phys. 134 244513

    [8]

    Miao T T, Song M X, Ma W G, Zhang X 2011 Chin. Phys. B 20 56501

    [9]

    Wang G T 2011 Chin. Phys. B 20 67305

    [10]

    Niu Z Q, Ma W J, Dong H B, Li J Z, Zhou W Y 2011 Chin. Phys. B 20 28101

    [11]

    De Las Casas C, Li W 2012 Power Sources 208 74

    [12]

    Xiong Z, Yun Y S, Jin H 2013 Materials 6 1138

    [13]

    Zhao J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [14]

    Senami M, Ikeda Y, Fukushima A, Tachibana A 2011 AIP Advances 1 42106

    [15]

    Kawasaki S, Hara T, Iwai Y, Suzuki Y 2008 Mater. Lett. 62 2917

    [16]

    Udomvech A, Kerdcharoen T 2008 J. Korean Phys. Soc. 52 1350

    [17]

    Nishidate K, Hasegawa M 2005 Phys. Rev. B 71 245418

    [18]

    Yang Z, Wu H 2001 Solid State Ionics 143 173

    [19]

    Yang S, Huo J, Song H, Chen X 2008 Electrochim. Acta 53 2238

    [20]

    Zhang Y P, Chen T Q, Wang J H, Min G Q, Pan L K, Song Z T, Sun Z, Zhou W M, Zhang J 2012 Appl. Surf. Sci. 258 4729

    [21]

    Wongchoosuk C, Udomvech A, Kerdcharoen T 2009 Current Appl. Phys. 9 352

    [22]

    He Z J, Zhou J 2011 Acta Chim. Sin. 69 2901 (in Chinese) [贺仲金, 周健 2011 化学学报 69 2901]

    [23]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [24]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101

    [25]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 76102

    [26]

    Xie H, Liu C 2012 AIP Advances 2 42126

    [27]

    Xu C, He Y L, Wang Y 2005 J. Engineer. Thermophys. 26 912 (in Chinese) [徐超, 何雅玲, 王勇 2005 工程热物理学报 26 912]

    [28]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [29]

    Lyu S, Wu W T, Hou C C, Hsieh W 2010 Cryobiology 60 165

    [30]

    Thakkar D, Gevriya B, Mashru R C 2013 Spectrochim. Acta A 122 75

    [31]

    Jia Y, Li Y, Hu Y 2011 Acta Phys. Chim. Sin. 27 228

    [32]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [33]

    Hanasaki I, Nakatani A 2006 J. Chem. Phys. 124 174714

    [34]

    Walther J H, Ritos K, Cruz-Chu E R, Megaridis C M, Koumoutsakos P 2013 Nano Lett. 13 1910

    [35]

    Krishnan T V, Babu J S, Sathian S P 2013 Mol. Liq. 188 42

    [36]

    Zhang C B, Zhao M W, Chen Y P, Shi M H 2012 CIESC J. 63 12 (in Chinese) [张程宾, 赵沐雯, 陈永平, 施明恒 2012 化工学报 63 12]

    [37]

    Li H M, Yang D F, Liu Q Z, Hu Y D 2013 Chem. J. Chin. Univ. 34 925 (in Chinese) [李红曼, 杨登峰, 刘清芝, 胡仰栋 2013 高等学校化学学报 34 925]

    [38]

    Corry B 2011 Energy Environ. Sci. 4 751

  • [1]

    Scrosati B, Garche J 2010 Power Sources 195 2419

    [2]

    Liang C, Gao M X, Pan H G, Liu Y F, Yan M 2013 Alloy. Compd. 575 246

    [3]

    Landi B J, Ganter M J, Cress C D, DiLeo R A, Raffaelle R P 2009 Energy Environ. Sci. 2 638

    [4]

    Endo M, Kim C, Nishimura K, Fujino T, Miyashita K 2000 Carbon 38 183

    [5]

    Stura E, Nicolini C 2006 Anal. Chim. Acta 568 57

    [6]

    Suo L, Hu Y, Li H, Armand M, Chen L 2013 Nat. Commun. 4 1481

    [7]

    Su J, Guo H 2011 Chem. Phys. 134 244513

    [8]

    Miao T T, Song M X, Ma W G, Zhang X 2011 Chin. Phys. B 20 56501

    [9]

    Wang G T 2011 Chin. Phys. B 20 67305

    [10]

    Niu Z Q, Ma W J, Dong H B, Li J Z, Zhou W Y 2011 Chin. Phys. B 20 28101

    [11]

    De Las Casas C, Li W 2012 Power Sources 208 74

    [12]

    Xiong Z, Yun Y S, Jin H 2013 Materials 6 1138

    [13]

    Zhao J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [14]

    Senami M, Ikeda Y, Fukushima A, Tachibana A 2011 AIP Advances 1 42106

    [15]

    Kawasaki S, Hara T, Iwai Y, Suzuki Y 2008 Mater. Lett. 62 2917

    [16]

    Udomvech A, Kerdcharoen T 2008 J. Korean Phys. Soc. 52 1350

    [17]

    Nishidate K, Hasegawa M 2005 Phys. Rev. B 71 245418

    [18]

    Yang Z, Wu H 2001 Solid State Ionics 143 173

    [19]

    Yang S, Huo J, Song H, Chen X 2008 Electrochim. Acta 53 2238

    [20]

    Zhang Y P, Chen T Q, Wang J H, Min G Q, Pan L K, Song Z T, Sun Z, Zhou W M, Zhang J 2012 Appl. Surf. Sci. 258 4729

    [21]

    Wongchoosuk C, Udomvech A, Kerdcharoen T 2009 Current Appl. Phys. 9 352

    [22]

    He Z J, Zhou J 2011 Acta Chim. Sin. 69 2901 (in Chinese) [贺仲金, 周健 2011 化学学报 69 2901]

    [23]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [24]

    Ju Y Y, Zhang Q M, Gong Z Z, Ji G F 2013 Chin. Phys. B 22 83101

    [25]

    Wang Y, Zhao Y J, Huang J P 2012 Chin. Phys. B 21 76102

    [26]

    Xie H, Liu C 2012 AIP Advances 2 42126

    [27]

    Xu C, He Y L, Wang Y 2005 J. Engineer. Thermophys. 26 912 (in Chinese) [徐超, 何雅玲, 王勇 2005 工程热物理学报 26 912]

    [28]

    Wang J M, Hu J P, Liu C H, Shi S Q, Ouyang C Y 2012 Physics 41 95 (in Chinese) [王佳民, 胡军平, 刘春华, 施思齐, 欧阳楚英 2012 物理 41 95]

    [29]

    Lyu S, Wu W T, Hou C C, Hsieh W 2010 Cryobiology 60 165

    [30]

    Thakkar D, Gevriya B, Mashru R C 2013 Spectrochim. Acta A 122 75

    [31]

    Jia Y, Li Y, Hu Y 2011 Acta Phys. Chim. Sin. 27 228

    [32]

    Cao B Y, Chen M, Guo Z Y 2006 Acta Phys. Sin. 55 5305 (in Chinese) [曹炳阳, 陈民, 过增元 2006 物理学报 55 5305]

    [33]

    Hanasaki I, Nakatani A 2006 J. Chem. Phys. 124 174714

    [34]

    Walther J H, Ritos K, Cruz-Chu E R, Megaridis C M, Koumoutsakos P 2013 Nano Lett. 13 1910

    [35]

    Krishnan T V, Babu J S, Sathian S P 2013 Mol. Liq. 188 42

    [36]

    Zhang C B, Zhao M W, Chen Y P, Shi M H 2012 CIESC J. 63 12 (in Chinese) [张程宾, 赵沐雯, 陈永平, 施明恒 2012 化工学报 63 12]

    [37]

    Li H M, Yang D F, Liu Q Z, Hu Y D 2013 Chem. J. Chin. Univ. 34 925 (in Chinese) [李红曼, 杨登峰, 刘清芝, 胡仰栋 2013 高等学校化学学报 34 925]

    [38]

    Corry B 2011 Energy Environ. Sci. 4 751

  • [1] Xing He-wei, Chen Zhan-xiu, Yang Li, Su Yao, Li Yuan-hua, Hu-he Cang. Molecular dynamics simulation of the effect of non-condensable gases on the heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20240192
    [2] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [3] Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface. Acta Physica Sinica, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [4] Pan Deng, Liu Chang-Xin, Zhang Ze-Yang, Gao Yu-Jin, Hao Xiu-Hong. Effect of velocity on polytetrafluoroethylene friction coefficient using molecular dynamics simulaiton. Acta Physica Sinica, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [5] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [6] Li Rui, Mi Jun-Xia. Influence of hydroxyls at interfaces on motion and friction of carbon nanotube by molecular dynamics simulation. Acta Physica Sinica, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [7] Li Yang, Song Yong-Shun, Li Ming, Zhou Xin. Simulation studies on the diffusion of water solitons in carbon nanotube. Acta Physica Sinica, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [8] Zeng Yong-Hui, Jiang Wu-Gui, Qin Qing-Hua. Influence of helical rise on the self-excited oscillation behavior of zigzag @ zigzag double-wall carbon nanotubes. Acta Physica Sinica, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [9] Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei. Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction. Acta Physica Sinica, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [10] Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei. Flux controllable pumping of water molecules in a double-walled carbon nanotube. Acta Physica Sinica, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [11] Jiao Xue-Jing, Ouyang Fang-Ping, Peng Sheng-Lin, Li Jian-Ping, Duan Ji-An, Hu You-Wang. Formation of all carbon heterojunction: through the docking of carbon nanotubes. Acta Physica Sinica, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [12] Zhang Zhong-Qiang, Ding Jian-Ning, Liu Zhen, Xue Yi-Bin, Cheng Guang-Gui, Ling Zhi-Yong. Analysis of Interfacial Mechanical Properties of Carbon NanotubePolymer Composite. Acta Physica Sinica, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [13] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [14] Zhang Zhong-Qiang, Zhang Hong-Wu, Wang Lei, Zheng Yong-Gang, Wang Jin-Bao. Pressure control model for transport of liquid mercury in carbon nanotubes. Acta Physica Sinica, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [15] Xin Hao, Han Qiang, Yao Xiao-Hu. Influences of atom vacancies on buckling properties of armchair single-walled carbon nanotubes shown by molecular dynamics simulation. Acta Physica Sinica, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [16] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [17] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [18] Zhang Zhu-Hua, Guo Wan-Lin, Guo Yu-Feng. The effects of axial magnetic field on electronic properties of carbon nanotubes. Acta Physica Sinica, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [19] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] Bao Wen-Xing, Zhu Chang-Chun, Cui Wan-Zhao. Study of structure optimization of carbon nanotubes using hybrid genetic algorithm based on clonal selection principle. Acta Physica Sinica, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
Metrics
  • Abstract views:  5608
  • PDF Downloads:  1354
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2014
  • Accepted Date:  11 June 2014
  • Published Online:  05 October 2014

/

返回文章
返回