Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on charge trapping memory’s over erase

Wang Jia-Yu Dai Yue-Hua Zhao Yuan-Yang Xu Jian-Bin Yang Fei Dai Guang-Zhen Yang Jin

Citation:

Research on charge trapping memory’s over erase

Wang Jia-Yu, Dai Yue-Hua, Zhao Yuan-Yang, Xu Jian-Bin, Yang Fei, Dai Guang-Zhen, Yang Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, charge trapping memory (CTM) is studied for analyzing the over-erase phenomenon, based on the first principles and VASP package. The nitrogen vacancy (VN) in Si3N4 and the interstitial oxygen (IO) in HfO2 are selected as model, because of the formation energy. The result about trapping energy shows that the electrons are trapped more easily than holes in these models, so the electrons are selected as programming/erase object. The energy after programming/erase operation, Bader charge analysis, different charge densities, adsorption energy and density of states are all studied to explain the over-erase micro change. The energy and electron change show that HfO2 as trapping layer makes CTM more reliable than Si3N4 as trapping layer; and after a programming/erase cycle, electrons in Si3N4 are erased more than programming ones; and the result of adsorption energy shows that the electrons can exchange more easily in Si3N4 than in HfO2. Finally, the research on the density of states shows that Si3N4 has shallow trapping energy level, HfO2 has deep trapping energy level. In conclusion, the essence of the over-erase in Si3N4 is that the atoms near the defect have weaker localized action on the electrons, resulting in the instinct electrons that are erased in erase operation. The over-erase essence is revealed, which is of benefit to improving the reliability and retention.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106) and the Postgraduate Research and Innovation Project of Anhui High School, China.
    [1]

    Jin L 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文 (合肥: 安徽大学)]

    [2]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, BAI Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [3]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [4]

    Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Elec. Dev. Lett. 29 518

    [5]

    Zeng Y J, Dai Y H, Chen J N 2012 Mater. Struct. 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]

    [6]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Elec. Dev. 51 1143

    [7]

    Cho M K, Kim D M 2000 IEEE Elec. Dev. Lett. 21 399

    [8]

    Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403

    [9]

    Chevrier V L, Zwanziger J W, Dahn J R 2010 J. Alloys Compod. 496 25

    [10]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Computat. Mater. Sci. 36 354

    [11]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese) [吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍 2013 物理学报 62 186301]

    [12]

    Hu M, Wang W D, Zeng P, Zeng J, Qin Y X 2012 Chin. Phys. B 21 023101

    [13]

    Prada S, Rosa M, Giordano L, Valentin C D, Pacchioni G 2011 Phys. Rev. B 83 245314

    [14]

    Pan Y, Guan W M, Chen S, Zhang K H 2011 Rare Metal Mater. Engineer. 40 80 (in Chinese) [潘勇, 管伟明, 陈松, 张昆华 2011 稀有金属材料与工程 40 80]

    [15]

    Larcher L, Padovani A, Vandelli L, Pavan P 2011 Microelectr. Engineer. 88 1168

    [16]

    Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678

    [17]

    Jarolimek K, de Groot R A, de Wijs G A, Zeman M 2010 Phys. Rev. B 82 205201

    [18]

    Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403

    [19]

    Wang W C, Xiong K, Wallace R M, Cho K 2010 J. Phys. Chem. C 114 22610

    [20]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li XF, Liu M, Dai Y H 2013 J. Semicond. 34 032001

    [21]

    Giacomazzi L, Umari P 2009 Phys. Rev. B 80 144201

    [22]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]

    [23]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004

    [24]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectr. Engineer. 86 1866

  • [1]

    Jin L 2012 Ph. D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文 (合肥: 安徽大学)]

    [2]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, BAI Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [3]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [4]

    Fu J, Singh N, Yang B, Zhu C X, Lo G Q, Kwong D L 2008 IEEE Elec. Dev. Lett. 29 518

    [5]

    Zeng Y J, Dai Y H, Chen J N 2012 Mater. Struct. 49 382 (in Chinese) [曾叶娟, 代月花, 陈军宁 2012 材料与结构 49 382]

    [6]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Elec. Dev. 51 1143

    [7]

    Cho M K, Kim D M 2000 IEEE Elec. Dev. Lett. 21 399

    [8]

    Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403

    [9]

    Chevrier V L, Zwanziger J W, Dahn J R 2010 J. Alloys Compod. 496 25

    [10]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Computat. Mater. Sci. 36 354

    [11]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese) [吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍 2013 物理学报 62 186301]

    [12]

    Hu M, Wang W D, Zeng P, Zeng J, Qin Y X 2012 Chin. Phys. B 21 023101

    [13]

    Prada S, Rosa M, Giordano L, Valentin C D, Pacchioni G 2011 Phys. Rev. B 83 245314

    [14]

    Pan Y, Guan W M, Chen S, Zhang K H 2011 Rare Metal Mater. Engineer. 40 80 (in Chinese) [潘勇, 管伟明, 陈松, 张昆华 2011 稀有金属材料与工程 40 80]

    [15]

    Larcher L, Padovani A, Vandelli L, Pavan P 2011 Microelectr. Engineer. 88 1168

    [16]

    Song Y C, Liu X Y, Du G, Kang J F, Han R Q 2008 Chin. Phys. B 17 2678

    [17]

    Jarolimek K, de Groot R A, de Wijs G A, Zeman M 2010 Phys. Rev. B 82 205201

    [18]

    Zhang Y Y, Shao T M, Su K 2013 Chin. Phys. B 22 053403

    [19]

    Wang W C, Xiong K, Wallace R M, Cho K 2010 J. Phys. Chem. C 114 22610

    [20]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li XF, Liu M, Dai Y H 2013 J. Semicond. 34 032001

    [21]

    Giacomazzi L, Umari P 2009 Phys. Rev. B 80 144201

    [22]

    Wang J Y, Zhao Y Y, Xu J B, Dai Y H 2014 Acta Phys. Sin. 63 053101 (in Chinese) [汪家余, 赵远洋, 徐建彬, 代月花 2014 物理学报 63 053101]

    [23]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004

    [24]

    Gritsenko V A, Nekrashevich S S, Vasilev V V, Shaposhnikov A V 2009 Microelectr. Engineer. 86 1866

  • [1] Jiang Nan, Li Ao-Lin, Qu Shui-Xian, Gou Si, Ouyang Fang-Ping. First principles study of magnetic transition of strain induced monolayer NbSi2N4. Acta Physica Sinica, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [2] Fu Zheng-Hong, Li Ting, Shan Mei-Le, Guo Kang, Gou Guo-Qing. Effect of H on elastic properties of Mg2Si by the first principles calculation. Acta Physica Sinica, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [3] Dai Guang-Zhen, Jiang Yong-Zhao, Ni Tian-Ming, Liu Xin, Lu Lin, Liu Qi. First principles study of effect of vaiable component Al on HfO2 resistance. Acta Physica Sinica, 2019, 68(11): 113101. doi: 10.7498/aps.68.20181995
    [4] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [5] Hu Jie-Qiong, Xie Ming, Chen Jia-Lin, Liu Man-Men, Chen Yong-Tai, Wang Song, Wang Sai-Bei, Li Ai-Kun. First principles study of electronic and elastic properties of Ti3AC2 (A = Si, Sn, Al, Ge) phases. Acta Physica Sinica, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [6] Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li. First-principles calculation for hydrogen-doped hematite. Acta Physica Sinica, 2015, 64(11): 116301. doi: 10.7498/aps.64.116301
    [7] Jiang Xian-Wei, Lu Shi-Bin, Dai Guang-Zhen, Wang Jia-Yu, Jin Bo, Chen Jun-Ning. Research of data retention for charge trapping memory by first-principles. Acta Physica Sinica, 2015, 64(21): 213102. doi: 10.7498/aps.64.213102
    [8] Dai Yue-Hua, Jin Bo, Wang Jia-Yu, Chen Zhen, Li Ning, Jiang Xian-Wei, Lu Wen-Juan, Li Xiao-Feng. First-principles study on the minimization of over-erase phenomenon in Si3N4 trapping layer. Acta Physica Sinica, 2015, 64(13): 133102. doi: 10.7498/aps.64.133102
    [9] Zhou Ren-Di, Huang Xue-Fei, Qi Zhi-Jian, Huang Wei-Gang. Preparation and luminescent properties of Ca2Si(O4-xNx):Eu2+ green-emitting phosphors. Acta Physica Sinica, 2014, 63(19): 197801. doi: 10.7498/aps.63.197801
    [10] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [11] Lin Ling, Zhu Jia-Jie, Fang Hong. First-principles study on cation-doped Lu2Si2O7. Acta Physica Sinica, 2013, 62(14): 147101. doi: 10.7498/aps.62.147101
    [12] Li Zong-Bao, Wang Xia, Jia Li-Chao. Synergistic effects in Fe/N codoped anatase TiO2 (101) surface:a theoretical study based on density functional theory calculation. Acta Physica Sinica, 2013, 62(20): 203103. doi: 10.7498/aps.62.203103
    [13] Hu Xiao-Ying, Tian Hong-Wei, Song Li-Jun, Zhu Pin-Wen, Qiao Liang. First-prinicples study of Li-N and Li-2N codoped p-type ZnO. Acta Physica Sinica, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [14] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [15] Chen Yu-Hong, Du Rui, Zhang Zhi-Long, Wang Wei-Chao, Zhang Cai-Rong, Kang Long, Luo Yong-Chun. First principles study of H2 molecule adsorption on Li3 N(110) surfaces. Acta Physica Sinica, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [16] Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng. First-principles calculation and experimental study of Si-doped β-Ga2O3. Acta Physica Sinica, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [17] Kong Chao, Xu Zheng, Zhao Su-Ling, Zhang Fu-Jun, Huang Jin-Ying, Yan Guang, Li Jun-Ming. Solid state cathodoluminescence of poly (2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene in devices with Si3N4 as the electronic accelerating layer. Acta Physica Sinica, 2008, 57(12): 7891-7895. doi: 10.7498/aps.57.7891
    [18] Zhao Zong-Yan, Liu Qing-Ju, Zhang Jin, Zhu Zhong-Qi. First-principles study of 3d transition metal-doped anatase. Acta Physica Sinica, 2007, 56(11): 6592-6599. doi: 10.7498/aps.56.6592
    [19] Peng Li-Ping, Xu Ling, Yin Jian-Wu. First-principles study the optical properties of anatase TiO2 by N-doping. Acta Physica Sinica, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] Yan Zhi-Jun, Wang Yin-Yue, Xu Run, Jiang Zui-Min. Structural characteristics of HfO2 films grown by e-beam evaporation. Acta Physica Sinica, 2004, 53(8): 2771-2774. doi: 10.7498/aps.53.2771
Metrics
  • Abstract views:  5179
  • PDF Downloads:  606
  • Cited By: 0
Publishing process
  • Received Date:  13 May 2014
  • Accepted Date:  16 June 2014
  • Published Online:  05 October 2014

/

返回文章
返回