Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin polarization and potential energy function of FeH2

Zheng Yuan-Yuan Ren Gui-Ming Chen Rui Wang Xing-Ming Chen Xiao-Hong Wang Ling Yuan Li Huang Xiao-Feng

Citation:

Spin polarization and potential energy function of FeH2

Zheng Yuan-Yuan, Ren Gui-Ming, Chen Rui, Wang Xing-Ming, Chen Xiao-Hong, Wang Ling, Yuan Li, Huang Xiao-Feng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Among the three methods (B3LYP, BP86 and B3LYP*) in density functional theory (DFT), the best tools for predicting the ground state of metal hydride, the B3LYP method for predicting the harmonic frequencies and geometric parameters of the ground state of FeH2 gives result in good accordance with the experimental data; so it is employed to optimize the structure of molecules FeH and FeH2 in possible geometries and multiplicities based on 6-311++g(d,p) level in searching of the structure with the lowest energy. Results show that their electronic states in the ground states are FeH(4Δ) and FeH2(5A1), supposing that the two molecules have three and four unpaired electrons respectively, with spin polarization effect, and they are paramagnetic substances, and the stable structure of molecule FeH2 is of C2v symmetry. The Murrell-Sorbie potential energy function-the sufficient analytical potential function form for biatomic molecules-with 4 parameters in molecule FeH is derived via the least square method. Their spectra data and force constants are deduced according to the results. The analytical potential energy function of FeH2 is also obtained from the many-body expansion theory, which gives the analytical potential function of triatom molecules of the single-value potential surface consisting of three parts with single body terms, two body terms, and three body terms. The deduced analytical functions for FeH2 in this paper predict successfully a global minimum stable structure of quintet FeH2 with a 4.68 eV depth potential trap, and other higher energy stable and saddle structures. This potential function predicts the balanced ground structure and the second derivative force constants of this molecule. According to the potential function of FeH2(C2v), when it is formed from H and FeH, a potential trap with its depth being 4.68 eV is excited and the complex molecule of H–Fe–H is easily formed. The reaction of Fe+H2 → HFeH is exothermic with ΔH=-0.08305 eV.
    • Funds: Project supported by the Key Fund Project of Department of Education Sichuan Province, China (Grant No. 14ZA0113), and the Innovation Fund of Postgraduate, Xihua University, Sichuan Province, China (Grant No. ycjj2014127).
    [1]

    Wende S Reiners A G. Ludwig H 2009 Astro. Astrophys. 508 1429

    [2]

    Körsgen H Mrtz P Lipus K Urban W, Towle J P Brown J M 1996 J. Chem. Phys. 104 4859

    [3]

    Ozin G A McCaffrey J G 1984 J. Phys. Chem 88 645

    [4]

    Rubinovitz R L Nixon E R 1986 J. Phys. Chem 90 1940

    [5]

    Heike M Christel M, Marian M 1998 Mol. Phys. 94 843

    [6]

    Ishimatsu N 2011 The Rev. Hig. Pres. Sci. and Tech. 21 176 (in Japanese)

    [7]

    Narygina O Dubrovinsky L S McCammon C A Kurnosov A Kantor I Y Prakapenka V B Dubrovinskaia N A 2011 Ear Plan Sci Let 307 409

    [8]

    Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011 The Rev. Hig. Pres. Sci. and Tech. 21 190 (in Japanese) [Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011高圧力の科学と技術 21 190]

    [9]

    Körsgen H Evenson K M Brown J M 1997 J. Chem. Phys 107 1025

    [10]

    Körsgen H Urban W Brown J M 1999 J. Chem. Phys. 110 3861

    [11]

    Miller A E S Feigerle C S Lineberger W C 1986 J. Chem. Phys. 84 4127

    [12]

    Martini H Marian C M 1998 Molecular Physics 94 843

    [13]

    Minot C Demangeat C 1987 J. Chem. Phys. 86 2161

    [14]

    Tanaka K, Nobusada K 2004 Chem. Phys. Lett. 388 389

    [15]

    Siegbahn P E M Blomberg M R A Bauschlicher J C W 1984 J. Chem. Phys. 81 1373

    [16]

    Granucci G Persico M 1992 Chem. Phys. 167 121

    [17]

    Martini H Marian C M Peri M 1998 Mol. Phys. 95 27

    [18]

    Xuefeng W, Andrews L 2009 J. Phys. Chem. A 113 551

    [19]

    Du Q Wang L, Chen X H, Wang H Y, Gao T Zhu Z H 2009 Acta Phys. Sin. 58 0178 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2009 物理学报 58 0178]

    [20]

    Becke A D 1988 Phys. Rew. A 38 3098

    [21]

    Lee C, Yang W Parr R G 1988 Phys. ReV. B 37 785

    [22]

    Becke A D 1988 Phys. ReV. A 38 3098

    [23]

    Perdew J P 1986 Phys. ReV. B 33 8822

    [24]

    Dendramis D Zee R J V Weltner J W 1979 The Astro 231 632

    [25]

    Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press) (in Chinses) [朱正和1996原子分子反应静力学(北京: 科学出版社)]

    [26]

    Du Q, Wang L, Shen X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 物理学报 55 6308]

    [27]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [28]

    Wu D L, Tan B, Wan H J, Xie A D 2013 Chin. Phys. B 22 123101

  • [1]

    Wende S Reiners A G. Ludwig H 2009 Astro. Astrophys. 508 1429

    [2]

    Körsgen H Mrtz P Lipus K Urban W, Towle J P Brown J M 1996 J. Chem. Phys. 104 4859

    [3]

    Ozin G A McCaffrey J G 1984 J. Phys. Chem 88 645

    [4]

    Rubinovitz R L Nixon E R 1986 J. Phys. Chem 90 1940

    [5]

    Heike M Christel M, Marian M 1998 Mol. Phys. 94 843

    [6]

    Ishimatsu N 2011 The Rev. Hig. Pres. Sci. and Tech. 21 176 (in Japanese)

    [7]

    Narygina O Dubrovinsky L S McCammon C A Kurnosov A Kantor I Y Prakapenka V B Dubrovinskaia N A 2011 Ear Plan Sci Let 307 409

    [8]

    Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011 The Rev. Hig. Pres. Sci. and Tech. 21 190 (in Japanese) [Matsuoka T, Hirao N Ohishi Y K Shimizu, Machida A Aoki K 2011高圧力の科学と技術 21 190]

    [9]

    Körsgen H Evenson K M Brown J M 1997 J. Chem. Phys 107 1025

    [10]

    Körsgen H Urban W Brown J M 1999 J. Chem. Phys. 110 3861

    [11]

    Miller A E S Feigerle C S Lineberger W C 1986 J. Chem. Phys. 84 4127

    [12]

    Martini H Marian C M 1998 Molecular Physics 94 843

    [13]

    Minot C Demangeat C 1987 J. Chem. Phys. 86 2161

    [14]

    Tanaka K, Nobusada K 2004 Chem. Phys. Lett. 388 389

    [15]

    Siegbahn P E M Blomberg M R A Bauschlicher J C W 1984 J. Chem. Phys. 81 1373

    [16]

    Granucci G Persico M 1992 Chem. Phys. 167 121

    [17]

    Martini H Marian C M Peri M 1998 Mol. Phys. 95 27

    [18]

    Xuefeng W, Andrews L 2009 J. Phys. Chem. A 113 551

    [19]

    Du Q Wang L, Chen X H, Wang H Y, Gao T Zhu Z H 2009 Acta Phys. Sin. 58 0178 (in Chinese) [杜泉, 王玲, 谌晓洪, 王红艳, 高涛, 朱正和 2009 物理学报 58 0178]

    [20]

    Becke A D 1988 Phys. Rew. A 38 3098

    [21]

    Lee C, Yang W Parr R G 1988 Phys. ReV. B 37 785

    [22]

    Becke A D 1988 Phys. ReV. A 38 3098

    [23]

    Perdew J P 1986 Phys. ReV. B 33 8822

    [24]

    Dendramis D Zee R J V Weltner J W 1979 The Astro 231 632

    [25]

    Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press) (in Chinses) [朱正和1996原子分子反应静力学(北京: 科学出版社)]

    [26]

    Du Q, Wang L, Shen X H, Gao T 2006 Acta Phys. Sin. 55 6308 (in Chinese) [杜泉, 王玲, 谌晓洪, 高涛 2006 物理学报 55 6308]

    [27]

    Hu S L, Shi T Y 2013 Chin. Phys. B 22 093101

    [28]

    Wu D L, Tan B, Wan H J, Xie A D 2013 Chin. Phys. B 22 123101

Metrics
  • Abstract views:  6596
  • PDF Downloads:  569
  • Cited By: 0
Publishing process
  • Received Date:  14 May 2014
  • Accepted Date:  19 June 2014
  • Published Online:  05 November 2014

/

返回文章
返回