Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deformation behaviors of zircaloy-4 alloy under uniaxial compression

Li Hong-Jia Sun Guang-Ai Gong Jian Chen Bo Wang Hong Li Jian Pang Bei-Bei Zhang Ying Peng Shu-Ming

Citation:

Deformation behaviors of zircaloy-4 alloy under uniaxial compression

Li Hong-Jia, Sun Guang-Ai, Gong Jian, Chen Bo, Wang Hong, Li Jian, Pang Bei-Bei, Zhang Ying, Peng Shu-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Zirconium (Zr) has a hexagonal close-packed crystal structure, which exhibits elastic and plastic anisotropy. Internal stresses can be easily generated in the rolling process and the subsequent plastic deformation process. It is critical to evaluate the internal stresses and the deformation mechanisms of Zr alloy materials. The deformation behaviors of Zr alloy influence directly its service life and safety. In this work, compression deformation behaviors of zircaloy-4 (Zr-4) alloy have been studied by the in situ neutron diffraction technique combined with the elastic-plastic self-consistent (EPSC) simulation. A compressive external load is applied along the thickness direction of the rolled plate, which is called through-thickness compression. Electron back-scattered diffraction is used to analyze the texture evolution during the plastic deformation. Transmission electron microscopy (TEM) is used to measure the distribution of the defects in the deformed sample. The EPSC simulation provides the deformation mechanism quantitatively by fitting the in situ neutron diffraction data, and the simulated results is confirmed by the TEM observations. Results show that when the true strain is small (less than 0.55%), prismatic {1010}20> (a> type) slip dominates; however, as the plastic strain is increased, the percentage of pyramidal {1011}23> (c+a> type) slip becomes larger than that of prismatic {1010}20> (a> type) slip, and the pyramidal {1011}20> (a> type) slip and pyramidal {1012}20> (a> type) slip may exist.
    • Funds: Project supported by the China Postdoctoral Science Foundation (Grant No. 2012M521715) and the National Natural Science Foundation of China (Grant Nos. 91126001, 11105128, 51231002).
    [1]

    Northwood D O 1985 Mater. Des. 6 58

    [2]

    Fisher E S, Renken C J 1964 Phys. Rev. 135 A482

    [3]

    Tome C N, Maudlin P J, Lebensohn R A, Kaschner G C 2001 Acta Mater. 49 3085

    [4]

    McCabe R J, Cerreta E K, Misra A, Kaschner G C, Tome C N 2006 Philos. Mag. 86 3595

    [5]

    Beyerlein I J, Tome C N 2008 Int. J. Plast. 24 867

    [6]

    Noyan I C, Cohen J B 1987 Residual Stress Measurement by Diffraction and Interpretation (New York: Springer)

    [7]

    Pang J W L, Holden T M, Turner P A, Mason T E 1999 Acta Mater. 47 373

    [8]

    Gou C, Cheng Y F, Chen D F, Hu B P, Wang Y Z, Liu G C, Yan Q W, Zhang P L, Sun X D, Wei Y N, Sun K 1994 Chin. Phys. 3 764

    [9]

    Wei B 2013 Chin. Phys. B 22 087405

    [10]

    Allen A, Andreani C, Hutchings M T, Windsor C G 1981 NDT Int. 14 249

    [11]

    Withers P J 2007 Comptes. Rendus. Phys. 8 806

    [12]

    Albertini G, Bruno G, Carrado A, Fiori F, Rogante M, Rustichelli F 1999 Meas. Sci. Technol. 10 R56

    [13]

    Stone H J, Withers P J, Holden T M, Roberts S M, Reed R C 1999 Metall. Mater. Trans. A 30 1797

    [14]

    Jia N, Peng L R, Brown D W, Clausen B, Wang Y D 2008 Metall. Mater. Trans. A 39 3134

    [15]

    Muránsky O, Sittner P, Zrnik J, Oliver E C 2008 Metall. Mater. Trans. A 39 3097

    [16]

    Davydov V, Lukas P, Strunz P, Kuzel R 2009 J. Phys.: Condens. Matter 21 095407

    [17]

    Proust G, Kaschner G C, Beyerlein I J, Clausen B, Brown D W, McCabe R J, Tome C N 2010 Exp. Mech. 50 125

    [18]

    Ma D, Stoica A D, An K, Yang L, Bei H, Mills R A, Skorpenske H, Wang X L 2011 Metall. Mater. Trans. A 42 1444

    [19]

    Eshelby J D 1957 Proc. R. Soc. Lond. A 241 376

    [20]

    Hill R 1965 J. Mech. Phys. Solids 13 89

    [21]

    Hutchinson J W 1976 Proc. R. Soc. Lond. A 348 101

    [22]

    Lebensohn R A, Tome C N 1993 Acta Metall. Mater. 41 2611

    [23]

    Proust G, Tome C N, Kaschner G C 2007 Acta Mater. 55 2137

    [24]

    Gloaguen D, Berchi T, Girard E, Guillen R 2007 Acta Mater. 55 4369

    [25]

    Li H J, Sun G A, Woo W, Gong J, Chen B, Wang Y D, Fu Y Q, Huang C Q, Xie L, Peng S M 2014 J. Nucl. Mater. 446 134

    [26]

    Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 物理学报 56 6543]

    [27]

    Hutchinson J W 1970 Proc. R. Soc. Lond. A 319 247

    [28]

    Turner P A, Christodoulou N, Tomé C N 1995 Int. J. Plast. 11 251

    [29]

    Tenckhoff E 1988 Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (Philadelphia: Special Technical Publication) pp19-23

    [30]

    Holt R A, Causey A R 1987 J. Nucl. Mater. 150 306

    [31]

    Wei Y L, Godfrey A, Liu W, Liu Q, Huang X, Hansen N, Winther G 2011 Scripta Mater. 65 355

    [32]

    Caillard D, Couret A 2002 Mat. Sci. Eng. A 322 108

    [33]

    Bacon D J, Vitek V 2002 Metall. Mater. Trans. A 33 721

    [34]

    Monnet G, Devincre B, Kubin L P 2004 Acta Mater. 52 4317

  • [1]

    Northwood D O 1985 Mater. Des. 6 58

    [2]

    Fisher E S, Renken C J 1964 Phys. Rev. 135 A482

    [3]

    Tome C N, Maudlin P J, Lebensohn R A, Kaschner G C 2001 Acta Mater. 49 3085

    [4]

    McCabe R J, Cerreta E K, Misra A, Kaschner G C, Tome C N 2006 Philos. Mag. 86 3595

    [5]

    Beyerlein I J, Tome C N 2008 Int. J. Plast. 24 867

    [6]

    Noyan I C, Cohen J B 1987 Residual Stress Measurement by Diffraction and Interpretation (New York: Springer)

    [7]

    Pang J W L, Holden T M, Turner P A, Mason T E 1999 Acta Mater. 47 373

    [8]

    Gou C, Cheng Y F, Chen D F, Hu B P, Wang Y Z, Liu G C, Yan Q W, Zhang P L, Sun X D, Wei Y N, Sun K 1994 Chin. Phys. 3 764

    [9]

    Wei B 2013 Chin. Phys. B 22 087405

    [10]

    Allen A, Andreani C, Hutchings M T, Windsor C G 1981 NDT Int. 14 249

    [11]

    Withers P J 2007 Comptes. Rendus. Phys. 8 806

    [12]

    Albertini G, Bruno G, Carrado A, Fiori F, Rogante M, Rustichelli F 1999 Meas. Sci. Technol. 10 R56

    [13]

    Stone H J, Withers P J, Holden T M, Roberts S M, Reed R C 1999 Metall. Mater. Trans. A 30 1797

    [14]

    Jia N, Peng L R, Brown D W, Clausen B, Wang Y D 2008 Metall. Mater. Trans. A 39 3134

    [15]

    Muránsky O, Sittner P, Zrnik J, Oliver E C 2008 Metall. Mater. Trans. A 39 3097

    [16]

    Davydov V, Lukas P, Strunz P, Kuzel R 2009 J. Phys.: Condens. Matter 21 095407

    [17]

    Proust G, Kaschner G C, Beyerlein I J, Clausen B, Brown D W, McCabe R J, Tome C N 2010 Exp. Mech. 50 125

    [18]

    Ma D, Stoica A D, An K, Yang L, Bei H, Mills R A, Skorpenske H, Wang X L 2011 Metall. Mater. Trans. A 42 1444

    [19]

    Eshelby J D 1957 Proc. R. Soc. Lond. A 241 376

    [20]

    Hill R 1965 J. Mech. Phys. Solids 13 89

    [21]

    Hutchinson J W 1976 Proc. R. Soc. Lond. A 348 101

    [22]

    Lebensohn R A, Tome C N 1993 Acta Metall. Mater. 41 2611

    [23]

    Proust G, Tome C N, Kaschner G C 2007 Acta Mater. 55 2137

    [24]

    Gloaguen D, Berchi T, Girard E, Guillen R 2007 Acta Mater. 55 4369

    [25]

    Li H J, Sun G A, Woo W, Gong J, Chen B, Wang Y D, Fu Y Q, Huang C Q, Xie L, Peng S M 2014 J. Nucl. Mater. 446 134

    [26]

    Hao X P, Wang B Y, Yu R S, Wei L 2007 Acta Phys. Sin. 56 6543 (in Chinese) [郝小鹏, 王宝义, 于润升, 魏龙 2007 物理学报 56 6543]

    [27]

    Hutchinson J W 1970 Proc. R. Soc. Lond. A 319 247

    [28]

    Turner P A, Christodoulou N, Tomé C N 1995 Int. J. Plast. 11 251

    [29]

    Tenckhoff E 1988 Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy (Philadelphia: Special Technical Publication) pp19-23

    [30]

    Holt R A, Causey A R 1987 J. Nucl. Mater. 150 306

    [31]

    Wei Y L, Godfrey A, Liu W, Liu Q, Huang X, Hansen N, Winther G 2011 Scripta Mater. 65 355

    [32]

    Caillard D, Couret A 2002 Mat. Sci. Eng. A 322 108

    [33]

    Bacon D J, Vitek V 2002 Metall. Mater. Trans. A 33 721

    [34]

    Monnet G, Devincre B, Kubin L P 2004 Acta Mater. 52 4317

  • [1] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [2] Wang Zhi-Qing, Yao Xiao-Ping, Shen Jie, Zhou Jing, Chen Wen, Wu Zhi. Micromechanism of ferroelectric fatigue and enhancement of fatigue resistance of lead zirconate titanate thin films. Acta Physica Sinica, 2021, 70(14): 146302. doi: 10.7498/aps.70.20202196
    [3] Zhan Xia, Joe Kelleher, Gao Jian-Bo, Ma Yan-Ling, Chu Ming-Qiang, Zhang Shu-Yan, Zhang Peng, Sanjooram Paddea, Gong Zhi-Feng, Hou Xiao-Dong. High temperature sample environment upgrade of ISIS engineering materials in-situ diffraction experiment. Acta Physica Sinica, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [4] Zhang Hai-Hui, Li Xiao-Di, Xie Yao-Ping, Hu Li-Juan, Yao Mei-Yi. First-principle study of the oxygen adsorption on Zr surface with Nb or Ge. Acta Physica Sinica, 2016, 65(9): 096802. doi: 10.7498/aps.65.096802
    [5] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [6] Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun. Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading. Acta Physica Sinica, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [7] Zhi Qi-Jun. The study of shape and shape-coexistence of neutron rich nuclei around N=28. Acta Physica Sinica, 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [8] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. Neutron diffraction study of aging process effect on phase structure of single crystal superalloy. Acta Physica Sinica, 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [9] Sun Guang-Ai, Darren Hughes, Thilo Pirling, Vincent Ji, Chen Bo, Chen Hua, Wu Er-Dong, Zhang Jun. Neutron diffraction study of stress and lattice mismatch induced by thermo-mechanical fatigue in single crystal superalloys. Acta Physica Sinica, 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [10] Xiao Na-Min, Li Dian-Zhong, Li Yi-Yi. Numerical investigation of deformation-induced dynamic transformation in Fe-C alloy by using a Q-state potts Monte Carlo model. Acta Physica Sinica, 2009, 58(13): 169-S176. doi: 10.7498/aps.58.169
    [11] Hao Xiao-Peng, Wang Bao-Yi, Yu Run-Sheng, Wei Long. Zirconium-ion implantation of zircaloy-4 investiged by slow positron beam. Acta Physica Sinica, 2007, 56(11): 6543-6546. doi: 10.7498/aps.56.6543
    [12] Zhang Guo-Ying, Zhang Hui, Liu Chun-Ming, Zhou Yong-Jun. The study on the ultrafine mechanism of steels: strain-induced phase-transform ation form austenite to ferrite. Acta Physica Sinica, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [13] LI GUO-QIANG, XU GONG-OU. SELFCONSISTENT SEMICLASSICAL CALCULATION OF DEFORMED HI OPTICAL POTENTIALS. Acta Physica Sinica, 1989, 38(4): 534-540. doi: 10.7498/aps.38.534
    [14] HE HUA-CHUN. MECHANICAL AND ELECTRICAL PROPERTIES OF DEFORMED AMORPHOUS ALLOYS. Acta Physica Sinica, 1988, 37(8): 1368-1372. doi: 10.7498/aps.37.1368
    [15] WANG GEN-SHI, CAO MING-ZHONG, SHAN HUI, CHEN JI-ZHOU, WANG JUN-QIAO. STRUCTURAL STUDIES OF AMORPHOUS HYDROGEN STORAGE ZrNi-ALLOYS. Acta Physica Sinica, 1987, 36(4): 518-523. doi: 10.7498/aps.36.518
    [16] YANG YING-CHANG, HE WEN-WANG, LIN QIN, YANG JI-LIAN, ZHOU HUI-MING, ZHU JIA-XUAN, ZENG XIANG-XIN, ZHANG BAI-SHEN, JIN LAN. NEUTRON DIFFRACTION STUDY OF HARD MAGNETIC ALLOY MnAlC. Acta Physica Sinica, 1983, 32(11): 1455-1459. doi: 10.7498/aps.32.1455
    [17] QIAN XIANG-RONG. NEUTRON DIFFRACTION STUDY OF THE ORDER-DISORDER TRANSITION OF AN Fe-Si-Al ALLOY. Acta Physica Sinica, 1981, 30(7): 887-894. doi: 10.7498/aps.30.887
    [18] XU ZHENG-YI. MECHANISM OF THE ENHANCEMENT OF NEUTRON DIFFRACTION FROM KDP AND TGS CRYSTALS UNDER THE ACTION OF AN ELECTROSTATIC FIELD. Acta Physica Sinica, 1978, 27(6): 700-709. doi: 10.7498/aps.27.700
    [19] . Acta Physica Sinica, 1975, 24(3): 210-214. doi: 10.7498/aps.24.210
    [20] . Acta Physica Sinica, 1965, 21(6): 1304-1307. doi: 10.7498/aps.21.1304
Metrics
  • Abstract views:  4394
  • PDF Downloads:  495
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2014
  • Accepted Date:  05 July 2014
  • Published Online:  05 December 2014

/

返回文章
返回