Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method

Fu Chong-Yuan Xing Song Shen Tao Tai Bo Dong Qian-Min Shu Hai-Bo Liang Pei

Citation:

Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method

Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • High-purity flower-like MoS2 microspheres have been successfully synthesized by hydrothermal method using Na2MoO4 and CH3CSNH2 as precursors, and H4O40SiW12 as an additive. Samples are characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). XRD and EDS patterns show that the as-prepared samples are MoS2, which have good crystallinity with a well-stacked layered structure. SEM images show that the as-prepared MoS2 are composed of flower-like microspheres with a mean diameter about 300 nm, the structures of which are constructed from dozens of hundreds of MoS2 nano-sheet with a thickness of several nanometers. It is also found that the silicotungstic acid plays an important role in the formation of the flower-like MoS2 microspheres, which could affect the size and morphology of the MoS2. Flower-like MoS2 is not found in the as-prepared product without adding silicotungstic acid. A formation mechanism of MoS2 microspheres is tentatively given.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006051, 61177050), the College students in Zhejiang Province Science and Technology Innovation Activities Plan, China (Grant No. 2013R409016), and the Science and Technology Department of Zhejiang Province Public Interest Research Technology, China (Grant No. 2013C31068).
    [1]

    Guo S B, Kang Q P, Cai C B, Qu X H 2012 Rare Metals. 31 368

    [2]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [3]

    Zhou W, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H 2013 Small 9 140

    [4]

    Rapoport L, N Fleischer, R Tenne 2005 Journal of Materials Chemistry 15 1782

    [5]

    Whittingham M S 2004 Chemical Reviews 104 4271

    [6]

    Cheng F Y, Chen J 2006 Journal of Materials Research. 21 2744

    [7]

    Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 Journal of the American Chemical Society 133 7296

    [8]

    Frindt R F, Arrott, A S, Curzon A E, Heinrich B, Morrison S R, Templeton T L, Divigalpitiya R, Gee M A, Joensen P, Schurer P J 1991 Journal of Applied Physics 70 6224

    [9]

    Dong H H 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [11]

    Zhang Z J, Zhang J, Xue Q J 1994 Journal of Physical Chemistry. 98 12973

    [12]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [13]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam Derrick, Wen H, Tok, Alfred I Y, Zhang Q, Zhang H 2012 Small 8 63

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology. 6 147

    [15]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotechnology. 8 497

    [16]

    Xiang Q J, Yu J G, Jaroniec M 2012 Journal of the American Chemical Society 134 6575

    [17]

    Liu Y, Yu Y X, Zhang W D 2013 Journal of Physical Chemistry C 117 12949

    [18]

    Margulis L, Salitra G, Tenne R, Tallanker M 1993 Nature 365 113

    [19]

    Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T 2003 Journal of Crystal Growth. 250 418

    [20]

    Li Q, Walter E C, Van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M 2005 The Journal of Physical Chemistry B 109 3169

    [21]

    Chen J, Li S L, Xu Q, Tanaka K 2002 Chemical Communications. 16 1722

    [22]

    Albiter MA, Huirache-Acuna R, Paraguay-Delgado F, Rico JL, Alonso-Nunez G 2006 Nanotechnology. 17 3473

    [23]

    Dhas N A, Suslick K S 2005 Journal of the American Chemical Society. 127 2368

    [24]

    Li Y, Bando Y, Golberg D 2003 Applied Physics Letters. 82 1962

    [25]

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK 2005 Proceedings of the National Academy of Sciences of the United States of America. 102 10451

    [26]

    Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science. 331 568

    [27]

    Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, Van der Zant, H SJ 2012 Nano Letters. 12 3187

    [28]

    Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen BS, Topsøe H, Besenbacher F 2000 Physical Review Letters 84 951

    [29]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nature Materials. 12 754

    [30]

    Chang K, Chen W 2011 ACS Nano. 5 4720

    [31]

    Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D, Tang D S 2011 Chin. Phys. B 20 036103

    [32]

    Cundy C S, Cox P A 2003 Chemical Reviews 103 663

    [33]

    Tang G G, Sun J R, Wei C, Wu K Q, Ji X R, Liu S S, Tang H, Li C S 2012 Materials Letters 86 9

    [34]

    Yang J, Li C X, Quan Z W, Zhang C, Yang P, Li Y, Yu C, Lin J 2008 The Journal of Physical Chemistry C 112 12777

  • [1]

    Guo S B, Kang Q P, Cai C B, Qu X H 2012 Rare Metals. 31 368

    [2]

    Guo H H, Yang T, Tao P, Zhang Z D 2014 Chin. Phys. B 23 017201

    [3]

    Zhou W, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H 2013 Small 9 140

    [4]

    Rapoport L, N Fleischer, R Tenne 2005 Journal of Materials Chemistry 15 1782

    [5]

    Whittingham M S 2004 Chemical Reviews 104 4271

    [6]

    Cheng F Y, Chen J 2006 Journal of Materials Research. 21 2744

    [7]

    Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J 2011 Journal of the American Chemical Society 133 7296

    [8]

    Frindt R F, Arrott, A S, Curzon A E, Heinrich B, Morrison S R, Templeton T L, Divigalpitiya R, Gee M A, Joensen P, Schurer P J 1991 Journal of Applied Physics 70 6224

    [9]

    Dong H H 2013 Acta Phys. Sin. 62 206101 (in Chinese) [董海明 2013 物理学报 62 206101]

    [10]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101]

    [11]

    Zhang Z J, Zhang J, Xue Q J 1994 Journal of Physical Chemistry. 98 12973

    [12]

    Li X M, Long M Q, Cui L L, Xiao J, Xu H 2014 Chin. Phys. B 23 047307

    [13]

    Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam Derrick, Wen H, Tok, Alfred I Y, Zhang Q, Zhang H 2012 Small 8 63

    [14]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nature Nanotechnology. 6 147

    [15]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotechnology. 8 497

    [16]

    Xiang Q J, Yu J G, Jaroniec M 2012 Journal of the American Chemical Society 134 6575

    [17]

    Liu Y, Yu Y X, Zhang W D 2013 Journal of Physical Chemistry C 117 12949

    [18]

    Margulis L, Salitra G, Tenne R, Tallanker M 1993 Nature 365 113

    [19]

    Li W J, Shi E W, Ko J M, Chen Z Z, Ogino H, Fukuda T 2003 Journal of Crystal Growth. 250 418

    [20]

    Li Q, Walter E C, Van der Veer W E, Murray B J, Newberg J T, Bohannan E W, Switzer J A, Hemminger J C, Penner R M 2005 The Journal of Physical Chemistry B 109 3169

    [21]

    Chen J, Li S L, Xu Q, Tanaka K 2002 Chemical Communications. 16 1722

    [22]

    Albiter MA, Huirache-Acuna R, Paraguay-Delgado F, Rico JL, Alonso-Nunez G 2006 Nanotechnology. 17 3473

    [23]

    Dhas N A, Suslick K S 2005 Journal of the American Chemical Society. 127 2368

    [24]

    Li Y, Bando Y, Golberg D 2003 Applied Physics Letters. 82 1962

    [25]

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK 2005 Proceedings of the National Academy of Sciences of the United States of America. 102 10451

    [26]

    Coleman J N, Lotya M, O'Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J 2011 Science. 331 568

    [27]

    Castellanos-Gomez A, Barkelid M, Goossens AM, Calado V E, Van der Zant, H SJ 2012 Nano Letters. 12 3187

    [28]

    Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen BS, Topsøe H, Besenbacher F 2000 Physical Review Letters 84 951

    [29]

    Najmaei S, Liu Z, Zhou W, Zou X L, Shi G, Lei S D, Yakobson B I, Idrobo J C, Ajayan P M, Lou J 2013 Nature Materials. 12 754

    [30]

    Chang K, Chen W 2011 ACS Nano. 5 4720

    [31]

    Yuan H J, Chen Y Q, Yu F, Peng Y H, He X W, Zhao D, Tang D S 2011 Chin. Phys. B 20 036103

    [32]

    Cundy C S, Cox P A 2003 Chemical Reviews 103 663

    [33]

    Tang G G, Sun J R, Wei C, Wu K Q, Ji X R, Liu S S, Tang H, Li C S 2012 Materials Letters 86 9

    [34]

    Yang J, Li C X, Quan Z W, Zhang C, Yang P, Li Y, Yu C, Lin J 2008 The Journal of Physical Chemistry C 112 12777

  • [1] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] Tian Jin-Peng, Wang Shuo-Pei, Shi Dong-Xia, Zhang Guang-Yu. Vertical short-channel MoS2 field-effect transistors. Acta Physica Sinica, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] Jiang Li-Ying, Yi Ying-Ting, Yi Zao, Yang Hua, Li Zhi-You, Su Ju, Zhou Zi-Gang, Chen Xi-Fang, Yi You-Gen. A four-band perfect absorber based on high quality factor and high figure of merit of monolayer molybdenum disulfide. Acta Physica Sinica, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [4] Liu Kai-Long, Peng Dong-Sheng. Effects of photoelectric properties of monolayer MoS2 under tensile strain. Acta Physica Sinica, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [5] Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue. Fluorescence enhancement of monolayer MoS2 in plasmonic resonator. Acta Physica Sinica, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [6] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [7] Liu Le, Tang Jian, Wang Qin-Qin, Shi Dong-Xia, Zhang Guang-Yu. Thermal stability of MoS2 encapsulated by graphene. Acta Physica Sinica, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] Li Ming-Lin, Wan Ya-Ling, Hu Jian-Yue, Wang Wei-Dong. Molecular dynamics simulation of effects of temperature and chirality on the mechanical properties of single-layer molybdenum disulfide. Acta Physica Sinica, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [9] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. First-principles study on multiphase property and phase transition of monolayer MoS2. Acta Physica Sinica, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [10] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [11] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [12] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [13] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [14] Chen Xian-Mei, Gao Xiao-Yong, Zhang Sa, Liu Hong-Tao. Influence of thermal decomposition temperature of zinc acetate on the structural and the optical properties of ZnO nanorods. Acta Physica Sinica, 2013, 62(4): 049102. doi: 10.7498/aps.62.049102
    [15] Li Yi-Tong, Shen Liang-Ping, Wang Hao, Wang Han-Bin. Investigation on the thermal and electrical conductivity of water based zinc oxide nanofluids. Acta Physica Sinica, 2013, 62(12): 124401. doi: 10.7498/aps.62.124401
    [16] Wan Bu-Yong, Yuan Jin-She, Feng Qing, Wang Ao. Hydrothermal synthesis of K, Na doped Cu-S nanocrystalline and effect of doping on crystal structure and performance. Acta Physica Sinica, 2013, 62(17): 178102. doi: 10.7498/aps.62.178102
    [17] Chen Xian-Mei, Wang Xiao-Xia, Gao Xiao-Yong, Zhao Xian-Wei, Liu Hong-Tao, Zhang Sa. Investigation on the fabrication of Ag-doped ZnO nanorods by hydrothermal method. Acta Physica Sinica, 2013, 62(5): 056104. doi: 10.7498/aps.62.056104
    [18] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [19] Liu Jia, Xu Ling-Ling, Zhang Hai-Lin, Lü Wei, Zhu Lin, Gao Hong, Zhang Xi-Tian. One-step hydrothermal process for self-assembly of zinc oxide nanorods array on Al-doped ZnO nanoplate surface. Acta Physica Sinica, 2012, 61(2): 027802. doi: 10.7498/aps.61.027802
    [20] Sun Hui, Zhang Qi-Feng, Wu Jin-Lei. Ultraviolet light emitting diode based on ZnO nanowires. Acta Physica Sinica, 2007, 56(6): 3479-3482. doi: 10.7498/aps.56.3479
Metrics
  • Abstract views:  9977
  • PDF Downloads:  2173
  • Cited By: 0
Publishing process
  • Received Date:  12 June 2014
  • Accepted Date:  20 August 2014
  • Published Online:  05 January 2015

/

返回文章
返回