Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells

Xia Xiang Liu Xi-Zhe

Citation:

Effects of CH3NH3I on fabricating CH3NH3PbI(3-x)Clx perovskite solar cells

Xia Xiang, Liu Xi-Zhe
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Perovskite solar cell, which is prepared by using the organic-inorganic hybrid halide CH3NH3PbX3 (X = I, Cl and Br), receives widespread attention because of its solution processability and high photon-to-electron conversion efficiency. The highest reported photon-to-electron conversion efficiency is that using CH3NH3PbI(3-x)Clx as an absorber. It is reported that the diffusion length is greater than 1 micrometer in this mixed halide perovskite. The method most commonly used in preparing CH3NH3PbI(3-x)Clx film is the one-step pyrolysis method, which has a complex reaction mechanism. In this paper, we review the work about CH3NH3PbI(3-x)Clx perovskite, in which emphasis is put on the importance of the preparation process, and analyze the role of CH3NH3I in the one-step pyrolysis method for fabricating the CH3NH3PbI(3-x)Clxperovskite layer. Scanning electron microscope images show that CH3NH3I can improve the coverage and crystallinity of the perovskite layer for precursors in low CH3NH3I concentrations (CH3NH3I/PbCl2=2.0 and 2.5). For precursors in high CH3NH3I concentrations (CH3NH3I/PbCl2=2.75 and 3), this change is not obvious. X-ray photoelectron spectroscopy confirms the change of coverage, and indicates that the content of Cl in CH3NH3PbI(3-x)Clx will be less than 5% for precursors with high CH3NH3I concentrations (CH3NH3I/PbCl2>2.5). Perovskite solar cells based on CH3NH3PbI(3-x)Clx with different Cl dopant concentrations are studied by photoelectric measurements. Photocurrent density-photovoltage curves show that the performance of the devices increases with the increase of CH3NH3I concentration in precursors. And the incident-photon-to-current conversion efficiency (IPCE) measurements indicate that the devices fabricated by using precursors with high CH3NH3I concentration have a relatively high external quantum efficiency. These results imply that only CH3NH3PbI(3-x)Clx with very low Cl dopant concentration will be effective material for photovoltaic application. To further understand the difference between these devices during working condition, transient photovoltage/photocurrent measurements are carried out to investigate the carrier dynamics in the device. Transient photovoltage decay curves indicate that high Cl dopant concentration may decrease the photoelectron lifetime in CH3NH3PbI(3-x)Clx, and results in a relative low open-circuit photovoltage in the corresponding photovoltaic devices. The charge transport time in the devices of various Cl concentrations are studied by transient photocurrent decay method. CH3NH3PbI(3-x)Clx with low Cl dopant concentration has relative short transport time, which can avoid the recombination process and increase the charge collection efficiency.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51273079), the Science and Technology Development Program of Jilin Province of China (Grant No. 20150519021JH).
    [1]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 物理学报 62 027201]

    [2]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 物理学报 62 058801]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [7]

    Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206

    [8]

    Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem. Int. Ed. 53 3151

    [9]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80

    [10]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [11]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. photonics 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [14]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [15]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [18]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [19]

    You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Roiati V, Colella S, Lerario G, Marco L D, Rizzo A, Listorti A, Gigli G 2014 Energy Environ. Sci 7 1889

    [22]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Hisayo M, Hayase S 2014 Chem. Phys. Chem. 15 1062

    [23]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [24]

    Chavhan S, Miguel O, Grande H J, Pedro V G, Sanchez R S, Barea E M, Sero I M, Zaera R T 2014 J. Mater. Chem. A 2 12754

    [25]

    Giacomo F D, Razza S, Matteocci F, Epifanio A, Li coccia S, Brown T M, Carlo A D 2014 J. Power Sources 251 152

    [26]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

    [27]

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energy Environ. Sci. 7 2944

    [28]

    Matteocci F, Razza S, Giacomo F D, Casaluci S, Mincuzzi G, Brown T M, Epifanio A, Licoccia S, Carlo A D 2014 Phys. Chem. Chem. Phys. 16 3918

    [29]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [30]

    Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [31]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Wliilams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [32]

    Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R 2013 Chem. Mater. 25 4613

    [33]

    Park B, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466

    [34]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu L, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [35]

    Ku Z L, Rong Y G, Xu M, Liu T F, Han H W 2013 Sci. Rep 3 3132

    [36]

    Nakade S, Kanzaki T, Wada Y, Yanagida S 2005 Langmuir 21 10803

  • [1]

    Yu H Z 2013 Acta Phys. Sin. 62 027201 (in Chinese) [於黄忠 2013 物理学报 62 027201]

    [2]

    Wang L, Zhang X D, Yang X, Wei C C, Zhang D K, Wang G C, Sun J, Zhao Y 2013 Acta Phys. Sin. 62 058801 (in Chinese) [王利, 张晓丹, 杨旭, 魏长春, 张德坤, 王广才, 孙建, 赵颖 2013 物理学报 62 058801]

    [3]

    Han A J, Sun Y, Li Z G, Li B Y, He J J, Zhang Y, Liu W 2013 Acta Phys. Sin. 62 048401 (in Chinese) [韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮 2013 物理学报 62 048401]

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Y um J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591

    [6]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [7]

    Lv S L, Pang S P, Zhou Y Y, Padture N P, Hu H, Wang L, Zhou X H, Zhu H M, Zhang L X, Huang C S, Cui G L 2014 Phys. Chem. Chem. Phys. 16 19206

    [8]

    Pellet N, Gao P, Gregori G, Yang T Y, Nazeeruddin M K, Maier J, Grätzel M 2014 Angew. Chem. Int. Ed. 53 3151

    [9]

    Choi H, Jeong J, Kim H B, Kim S, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80

    [10]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295

    [11]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. photonics 8 489

    [12]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. Lett. 5 1004

    [13]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [14]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2014 Science 345 542

    [15]

    Zhang W, Saliba M, Stranks S D, Sun Y, Shi X, Wiesner U, Snaith H J 2013 Nano Lett. 13 4505

    [16]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [17]

    Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith H J 2014 Energy Environ. Sci. 7 1142

    [18]

    Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761

    [19]

    You J B, Hong Z R, Yang Y, Chen Q, Cai M, Song T B, Chen C C, Lu S R, Liu Y S, Zhou H P, Yang Y 2014 ACS Nano 8 1674

    [20]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [21]

    Roiati V, Colella S, Lerario G, Marco L D, Rizzo A, Listorti A, Gigli G 2014 Energy Environ. Sci 7 1889

    [22]

    Ogomi Y, Kukihara K, Qing S, Toyoda T, Yoshino K, Pandey S, Hisayo M, Hayase S 2014 Chem. Phys. Chem. 15 1062

    [23]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kenji K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [24]

    Chavhan S, Miguel O, Grande H J, Pedro V G, Sanchez R S, Barea E M, Sero I M, Zaera R T 2014 J. Mater. Chem. A 2 12754

    [25]

    Giacomo F D, Razza S, Matteocci F, Epifanio A, Li coccia S, Brown T M, Carlo A D 2014 J. Power Sources 251 152

    [26]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505

    [27]

    Barrows A T, Pearson A J, Kwak C K, Dunbar A D F, Buckley A R, Lidzey D G 2014 Energy Environ. Sci. 7 2944

    [28]

    Matteocci F, Razza S, Giacomo F D, Casaluci S, Mincuzzi G, Brown T M, Epifanio A, Licoccia S, Carlo A D 2014 Phys. Chem. Chem. Phys. 16 3918

    [29]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [30]

    Dualeh A, Tetreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [31]

    Liang P W, Liao C Y, Chueh C C, Zuo F, Wliilams S T, Xin X K, Lin J J, Jen A K Y 2014 Adv. Mater. 26 3748

    [32]

    Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, Angelis F D, Mosca R 2013 Chem. Mater. 25 4613

    [33]

    Park B, Philippe B, Gustafsson T, Sveinbjornsson K, Hagfeldt A, Johansson E M J, Boschloo G 2014 Chem. Mater. 26 4466

    [34]

    Shi J J, Dong J, Lv S T, Xu Y Z, Zhu L F, Xiao J Y, Xu L, Wu H J, Li D M, Luo Y H, Meng Q B 2014 Appl. Phys. Lett. 104 063901

    [35]

    Ku Z L, Rong Y G, Xu M, Liu T F, Han H W 2013 Sci. Rep 3 3132

    [36]

    Nakade S, Kanzaki T, Wada Y, Yanagida S 2005 Langmuir 21 10803

  • [1] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] Song Xie-Fei, Shai Xu-Xia, Li Jie, Ma Xin-Ru, Fu Yun-Chang, Zeng Chun-Hua. Electronic and optical properties of inorganic lead-free perovskite Cs3Bi2I9. Acta Physica Sinica, 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [3] Li Bin, Miao Xiang-Yang. Photoluminescence blinking properties of single CsPbBr3 perovskite quantum dots. Acta Physica Sinica, 2021, 70(20): 207802. doi: 10.7498/aps.70.20210908
    [4] Electronic and Optical Properties of Inorganic Lead-free Perovskite Cs3Bi2I9. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211599
    [5] Zhang Ao, Zhang Chun-Xiu, Zhang Chun-Mei, Tian Yi-Min, Yan Jun, Meng Tao. Effects of CH3NH3 polymer formation on performance of organic-inorganic hybrid perovskite solar cell. Acta Physica Sinica, 2021, 70(16): 168801. doi: 10.7498/aps.70.20210353
    [6] Li Jia-Sen, Liang Chun-Jun, Ji Chao, Gong Hong-Kang, Song Qi, Zhang Hui-Min, Liu Ning. Improvement in performance of carbon-based perovskite solar cells by adding 1, 8-diiodooctane into hole transport layer 3-hexylthiophene. Acta Physica Sinica, 2021, 70(19): 198403. doi: 10.7498/aps.70.20210586
    [7] Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang. First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3. Acta Physica Sinica, 2019, 68(14): 147101. doi: 10.7498/aps.68.20190573
    [8] Wang Ji-Ming, Chen Ke, Xie Wei-Guang, Shi Ting-Ting, Liu Peng-Yi, Zheng Yi-Fan, Zhu Rui. Research progress of solution processed all-inorganic perovskite solar cell. Acta Physica Sinica, 2019, 68(15): 158806. doi: 10.7498/aps.68.20190355
    [9] Fu Peng-Fei, Yu Dan-Ni, Peng Zi-Jian, Gong Jin-Kang, Ning Zhi-Jun. Perovskite solar cells passivated by distorted two-dimensional structure. Acta Physica Sinica, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [10] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [11] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [12] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [13] Yang Xu-Dong, Chen Han, Bi En-Bing, Han Li-Yuan. Key issues in highly efficient perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [14] Zhang Dan-Fei, Zheng Ling-Ling, Ma Ying-Zhuang, Wang Shu-Feng, Bian Zu-Qiang, Huang Chun-Hui, Gong Qi-Huang, Xiao Li-Xin. Factors influencing the stability of perovskite solar cells. Acta Physica Sinica, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [15] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [16] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [17] Wu Di, Zhao Ji-Jun, Tian Hua. Effect of substitution Fe2+ on physical properties of MgSiO3 perovskite at high temperature and high pressure. Acta Physica Sinica, 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [18] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [19] Xu Ying, Diao Hong-Wei, Zhang Shi-Bin, Li Xu-Dong, Zeng Xiang-Bo, Wang Wen-Jing, Liao Xian-Bo. Deposition of p-type nc-SiC:H thin films with subtle carbon incorporation for applications in p-i-n solar cells. Acta Physica Sinica, 2007, 56(5): 2915-2919. doi: 10.7498/aps.56.2915
    [20] Xiang Jun, Li Li-Ping, Su Wen-Hui. Preparation and characterization of a new perovskite-type oxide ion conductor KN b1-xMgxO3-δ. Acta Physica Sinica, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
Metrics
  • Abstract views:  6975
  • PDF Downloads:  2430
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2014
  • Accepted Date:  28 November 2014
  • Published Online:  05 February 2015

/

返回文章
返回