Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress in material study and photovoltaic device of Sb2Se3

Xue Ding-Jiang Shi Hang-Jie Tang Jiang

Citation:

Recent progress in material study and photovoltaic device of Sb2Se3

Xue Ding-Jiang, Shi Hang-Jie, Tang Jiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, antimony selenide (Sb2Se3) has been proposed as an alternative earth-abundant absorber material for thin film solar cells. Sb2Se3 is a simple V2-VI3 binary compound with an orthorhombic crystal structure and a space group of Pnma 62. It is a staggered layered compound consisting of parallel 1D (Sb4Se6)n ribbons held together by weak van der Waals forces. Sb2Se3 has a direct band gap of approximately 1.15 eV with a large absorption coefficient (>105 cm-1, at short wavelength) and a low grain growth temperature (~300^{o}C), facilitating the fabrication of low-cost thin film solar cells. Moreover, it is a simple binary compound in single phase with a fixed composition, which provides a much simpler growth chemistry than the multicomponent Cu2ZnSn(S,Se)4. In addition, it is stable upon exposure to the ambient air, thus having a better prospect for long-term stability than the organic-inorganic halide perovskite solar cells. Theoretical analysis indicates that the efficiency limit is >30% for single junction Sb2Se3 solar cells. Various approaches, including vacuum evaporation, electrodeposition, spray pyrolysis, and chemical bath deposition (CBD), have been explored to produce Sb2Se3 thin films; however, it is only in these years that Sb2Se3 solar cells have been reported by our group as well as by others. Seok's group presented the deposition of Sb2Se3 on mesoporous TiO2 films by thermal decomposition of Sb2Se3 single-source precursors, and fabricated Sb2Se3-sensitized inorganic-organic heterojunction solar cells with a remarkable efficiency of 3.21%. Tena-Zaera's group fabricated the FTO/TiO2/Sb2Se3/CuSCN/Au heterojunction device and achieved 2.1% device efficiency; their Sb2Se3 was obtained by an electrodeposition route and CuSCN served as a hole conducting layer. Different from the above Sb2Se3-sensitized solar cells reported by other groups, our group is the first in the world working on Sb2Se3 thin film solar cells so far as wu know. We have fabricated a hydrazine solution-processed TiO2/Sb2Se3 heterojunction solar cell, achieving 2.26% device efficiency (Voc = 0.52 V, Jsc = 10.3 mA/cm2 and m FF = 42.3%). In addition to the solution processing method, thermal-evaporated substrate and superstrate CdS/Sb2Se3 thin film solar cells with 2.1% and 1.9% efficiencies respectively were also demonstrated by our group. Recently, we have further improved the superstrate device performance to 3.7% (Voc=0.335 V, Jsc=24.4 mA/cm2, and m FF=46.8%$) by using a post selenization step. Selenization can compensate the Se loss during thermal evaporation, attenuate selenium vacancy-related recombination loss and hence improve the device performance. In summary, this paper summarizes the recent research progress in Sb2Se3-related researches, including material properties of Sb2Se3, synthesis of Sb2Se3 nanomaterials and thin films, theoretical studies on electrical properties, device configuration and efficiency improvement of Sb2Se3 sensitized and thin film solar cells. This review also presents a perspective on future development of Sb2Se3 solar cells.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91433105, 61322401, 61274055, 21403078).
    [1]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H, Mitzi D B 2014 Adv. Mater. DOI: 10.1002/adma.201402373

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506

    [3]

    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A 2 705

    [4]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [5]

    Limpinsel M, Farhi N, Berry N, Lindemuth J, Perkins C L, Lin Q, Law M 2014 Energy Environ. Sci. 7 1974

    [6]

    Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201400496

    [7]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201301846

    [8]

    Madelung O 2004 Semiconductor: Data Handbook (3rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) DOI: 10.1007/106817271042

    [9]

    Filip M R, Patrick C E, Giustino F 2013 Phys. Rev. B 87 205125

    [10]

    Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y 2012 Appl. Surf. Sci. 261 510

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Messina S, Nair M T S, Nair P K 2009 J. Electrochem. Soc. 156 H327

    [13]

    Deng Z, Mansuripur M, Muscat A J 2009 Nano Lett. 9 2015

    [14]

    Zhai T, Ye M, Li L, Fang X, Liao M, Li Y, Koide Y, Bando Y, Golberg D 2010 Adv. Mater. 22 4530

    [15]

    Rajpure K Y, Bhosale C H 2000 Mater. Chem. Phys. 62 169

    [16]

    El-Sayad E A 2008 J. Non-Cryst. Solids 354 3806

    [17]

    Guijarro N, Lutz T, Lana-Villarreal T, O'Mahony F, Gómez R, Haque S A 2012 J. Phys. Chem. Lett. 3 1351

    [18]

    Patrick C E, Giustino F 2011 Adv. Funct. Mater. 21 4663

    [19]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Nanotechnology 22 175705

    [20]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S H, Noh J H, Seok S I 2014 Angew. Chem. Int. Ed. 126 1353

    [21]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S I 2014 Adv. Eng. Mater. 4 1301680

    [22]

    Ngo T T, Chavhan S, Kosta I, Miguel O, Grande H J, Tena-Zaera R 2014 ACS Appl. Mater. Interfaces 6 2836

    [23]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [24]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [25]

    Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J 2014 Appl. Phys. Lett. 104 173904

    [26]

    Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J 2014 Appl. Phys. Lett. 105 083905

    [27]

    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687

  • [1]

    Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H, Mitzi D B 2014 Adv. Mater. DOI: 10.1002/adma.201402373

    [2]

    Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506

    [3]

    Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A 2 705

    [4]

    Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704

    [5]

    Limpinsel M, Farhi N, Berry N, Lindemuth J, Perkins C L, Lin Q, Law M 2014 Energy Environ. Sci. 7 1974

    [6]

    Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201400496

    [7]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201301846

    [8]

    Madelung O 2004 Semiconductor: Data Handbook (3rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) DOI: 10.1007/106817271042

    [9]

    Filip M R, Patrick C E, Giustino F 2013 Phys. Rev. B 87 205125

    [10]

    Lai Y, Chen Z, Han C, Jiang L, Liu F, Li J, Liu Y 2012 Appl. Surf. Sci. 261 510

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Messina S, Nair M T S, Nair P K 2009 J. Electrochem. Soc. 156 H327

    [13]

    Deng Z, Mansuripur M, Muscat A J 2009 Nano Lett. 9 2015

    [14]

    Zhai T, Ye M, Li L, Fang X, Liao M, Li Y, Koide Y, Bando Y, Golberg D 2010 Adv. Mater. 22 4530

    [15]

    Rajpure K Y, Bhosale C H 2000 Mater. Chem. Phys. 62 169

    [16]

    El-Sayad E A 2008 J. Non-Cryst. Solids 354 3806

    [17]

    Guijarro N, Lutz T, Lana-Villarreal T, O'Mahony F, Gómez R, Haque S A 2012 J. Phys. Chem. Lett. 3 1351

    [18]

    Patrick C E, Giustino F 2011 Adv. Funct. Mater. 21 4663

    [19]

    Vadapoo R, Krishnan S, Yilmaz H, Marin C 2011 Nanotechnology 22 175705

    [20]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S H, Noh J H, Seok S I 2014 Angew. Chem. Int. Ed. 126 1353

    [21]

    Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S I 2014 Adv. Eng. Mater. 4 1301680

    [22]

    Ngo T T, Chavhan S, Kosta I, Miguel O, Grande H J, Tena-Zaera R 2014 ACS Appl. Mater. Interfaces 6 2836

    [23]

    Gunawan O, Todorov T K, Mitzi D B 2010 Appl. Phys. Lett. 97 233506

    [24]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [25]

    Luo M, Leng M, Liu X, Chen J, Chen C, Qin S, Tang J 2014 Appl. Phys. Lett. 104 173904

    [26]

    Leng M, Luo M, Chen C, Qin S, Chen J, Zhong J, Tang J 2014 Appl. Phys. Lett. 105 083905

    [27]

    Liu X, Chen J, Luo M, Leng M, Xia Z, Zhou Y, Qin S, Xue D J, Lv L, Huang H, Niu D, Tang J 2014 ACS Appl. Mater. Interfaces 6 10687

  • [1] Liu Heng, Li Ye, Du Meng-Chao, Qiu Peng, He Ying-Feng, Song Yi-Meng, Wei Hui-Yun, Zhu Xiao-Li, Tian Feng, Peng Ming-Zeng, Zheng Xin-He. Atomic layer deposition of AlGaN alloy and its application in quantum dot sensitized solar cells. Acta Physica Sinica, 2023, 72(13): 137701. doi: 10.7498/aps.72.20230113
    [2] Li Xue-Rui, Lin Jun-Hui, Tang Rong, Zheng Zhuang-Hao, Su Zheng-Hua, Chen Shuo, Fan Ping, Liang Guang-Xing. Back contact optimization for Sb2Se3 solar cells. Acta Physica Sinica, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [3] Cao Yu, Liu Chao-Ying, Zhao Yao, Na Yan-Ling, Jiang Chong-Xu, Wang Chang-Gang, Zhou Jing, Yu Hao. Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [4] Optimization of interfacial characteristics of antimony sulfide selenide solar cells with double electron transport layer structure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211525
    [5] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [6] Zhang Yuan, Chen Chen, Li Mei-Ya, Luoshan Mengdai. Significant enhancement of the performance of dye-sensitized solar cells with photoelectrode co-doped graphene and hybrid SiO2@Au nanostructure. Acta Physica Sinica, 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [7] Cao Yu,  Zhu Xin-Yun,  Chen Han-Bo,  Wang Chang-Gang,  Zhang Xin-Tong,  Hou Bing-Dong,  Shen Ming-Ren,  Zhou Jing. Simulation and optimal design of antimony selenide thin film solar cells. Acta Physica Sinica, 2018, 67(24): 247301. doi: 10.7498/aps.67.20181745
    [8] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [9] Zhao Ze-Yu, Liu Jin-Qiao, Li Ai-Wu, Niu Li-Gang, Xu Ying. Theoretical study of microcavity-antireflection resonance hybrid modes enhanced absorption of organic solar cells. Acta Physica Sinica, 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [10] Chang Xiao-Yang, Yao Shun, Zhang Qi-Ling, Zhang Yang, Wu Bo, Zhan Rong, Yang Cui-Bai, Wang Zhi-Yong. Anti-radiation of space triple-junction solar cell based on distributed Bragg reflector structure. Acta Physica Sinica, 2016, 65(10): 108801. doi: 10.7498/aps.65.108801
    [11] Liu Xue-Wen, Zhu Chong-Yang, Dong Hui, Xu Feng, Sun Li-Tao. Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells. Acta Physica Sinica, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [12] Yuan Huai-Liang, Li Jun-Peng, Wang Ming-Kui. Recent progress in research on solid organic-inorganic hybrid solar cells. Acta Physica Sinica, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [13] Zhou Li, Wei Yuan, Huang Zhi-Xiang, Wu Xian-Liang. Study on the electromagnetic properties of thin-film solar cell grown with graphene using FDFD method. Acta Physica Sinica, 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [14] Ke Shao-Ying, Wang Chong, Pan Tao, He Peng, Yang Jie, Yang Yu. Optimization design of hydrogenated amorphous silicon germanium thin film solar cell with graded band gap profile. Acta Physica Sinica, 2014, 63(2): 028802. doi: 10.7498/aps.63.028802
    [15] Liang Zhao-Ming, Wu Yong-Gang, Xia Zi-Huan, Zhou Jian, Qin Xue-Fei. Influence of front and back grating period on light trapping of dual-grating structure thin film solar cell. Acta Physica Sinica, 2014, 63(19): 198801. doi: 10.7498/aps.63.198801
    [16] Li Xiao-Juan, Wei Shang-Jiang, Lü Wen-Hui, Wu Dan, Li Ya-Jun, Zhou Wen-Zheng. A new approach to fabricating silicon nanowire/poly(3, 4-ethylenedioxythiophene) hybrid heterojunction solar cells. Acta Physica Sinica, 2013, 62(10): 108801. doi: 10.7498/aps.62.108801
    [17] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. Analysis of electrical property parameters of CdS/CdTe solar cells fabricated by close space-sublimation. Acta Physica Sinica, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [18] Pan Hui-Ping, Bo Lian-Kun, Huang Tai-Wu, Zhang Yi, Yu Tao, Yao Shu-De. Structural analysis of Cu(In1-xGax)Se2 multi-layer thin film solar cells. Acta Physica Sinica, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [19] Bai Wen-Li, Guo Bao-Shan, Cai Li-Kang, Gan Qiao-Qiang, Song Guo-Feng. Simulation of light coupling enhancement and localization of transmission field via subwavelength metallic gratings. Acta Physica Sinica, 2009, 58(11): 8021-8026. doi: 10.7498/aps.58.8021
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  10720
  • PDF Downloads:  17189
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2014
  • Accepted Date:  15 January 2015
  • Published Online:  05 February 2015

/

返回文章
返回