Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

History and latest development of ferroelectric-semiconductor coupled photovoltaic devices

Yang Biao Liu Xiang-Xin Li Hui

Citation:

History and latest development of ferroelectric-semiconductor coupled photovoltaic devices

Yang Biao, Liu Xiang-Xin, Li Hui
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • This paper introduces the history and current research status of the novel ferroelectric-semiconductor coupled photovoltaic devices, in which a ferroelectric field of polarized dipoles from nanoparticles separates the photogenerated carriers. Fabrication of such devices by combining a CdS nanodipole and a CdTe absorber via a feasible method is described, which involves a phase segregation process of CdS from a CdS-CdTe pseudobinary system. An irregular behavior is observed on this type of devices, i.e. the hysteresis of open circuit voltage due to external bias of direct-current (DC) electric field. Other macroscopic and microscopic evidences of the dipole field photovoltaic effect are also described. Meanwhile, similar photovoltaic mechanism observed in other types of solar cells are also discussed, such as organic photovoltaic devices and quantum dot devices with photo-induced dipole polarization field, piezo-phototronic devices, ferroelectric photovoltaic devices, as well as perovskite solar cells. It is apparent that the polarization field of dipoles not only exists in the various types of photovoltaic devices, but also may dominate the behavior of devices. Therefore, we propose that a new concept of dipole field semiconductor devices could be properly used to explain the photovoltaic behavior of both junctional and un-junctional devices. The junctional devices could function with either pn junction or Schottky junction, while the un-junctional devices include all the devices mentioned above. We expect that various innovation should be inspired by this concept in photovoltaic community.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274060, 51472239), the Research Foundation of IEE, CAS (Grant No. Y110471CSB), the 100 Talents Preferred Support Program of the CAS (Grant No. Y210431C41), and the Chinese Academy of Sciences Innovative and Interdisciplinary Team Award–“High-efficiency Utilization of Renewable Energy Resources Innovative and Interdisciplinary Team”.
    [1]

    Yu G, Gao J, Hummelen J C, Wudi F, Heeger A J 1995 Science-AAAS-Weekly Paper Edition 270 1789

    [2]

    O'regan B, Grfitzeli M 1991 nature 353 737

    [3]

    Shvydka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [4]

    Shvydka D, Karpov V G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1

    [5]

    Shvydka D, Karpov V G 2009 US Patent 2009094366

    [6]

    Jha R, Liu X, Wieland K, Ordosgoitti J, Paudel.N, Sun K, Commpaan A 2010 MRS Spring Meeting San Francisco, CA, USA, April 26, 2010 p1260

    [7]

    McCandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. A 20 1462

    [8]

    Huang F, Liu X 2013 Appl.Phys. Lett. 102 103501

    [9]

    Huang F, Liu X, Wang W 2013 Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.2432

    [10]

    Schmidt M E, Blanton S A, Hines M A, Guyot-Sionnest P 1997 J. Chem. Phys. 106 5254

    [11]

    Blanton S A, Leheny R L, Hines M A, Guyot-Sionnest P. 1997 Phys. Rev. Lett. 79 865

    [12]

    Shim M, Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955

    [13]

    Zhang X, Zhang Z, Glotzer S C 2007 J. Chem. Phys. C 111 4132

    [14]

    Nalwa K S, Carr J A, Mahadevapuram R C, Kodali H K, Bose S, Chen Y Q, Petrich J W, Ganapathysubramanian B, Chaudhary S 2012 Energy Environ. Sci. 5 7042

    [15]

    Garbugli M, Porro M, Roiati V, Rizzo A, Gigli G, Petrozza A, Lanzani G 2012 Nanoscale 4 1728

    [16]

    Zi Li, Xu Zhang, Gang Lu 2012 J. Phys. Chem. C 116 9845

    [17]

    Buhbut S, Itzhakov S, Hod I, Oron D, Zaban A 2013 Nano Lett. 13 4456

    [18]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [19]

    Lu W, Lieber C M 2006 J. Phys. D. Appl. Phys. 39 387

    [20]

    Wang Z L 2008 Adv. Funct. Mater. 18 3553

    [21]

    Wang Z L 2007 Adv. Mater. 19 889

    [22]

    Wang Z L 2009 Materials Science and Engineering: Reports 64 33

    [23]

    Wang Z L 2010 J. Phys. Chem. Lett. 1 1388

    [24]

    Wang Z L, Song J 2006 Science 312.242

    [25]

    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102.

    [26]

    Qin Y, Wang X, Wang Z L 2008 Nature 451 809

    [27]

    Wang X, Wang X, Zhou J, Hui J, Liu J, Xu N S, Wang Z L 2006 Nano. Lett. 6 2768

    [28]

    He J H, Hsin C L, Liu J, Chen L J, Wang Z L 2007 Adv. Mater. 19 781

    [29]

    Lao C S, Kuang Q, Wang Z L, Pack M C, Deng Y L 2007 Appl. Phys. Lett 90 262107

    [30]

    Zhang Y, Yang Y, Wang Z L 2012 Energy Environ. Sci. 5 50

    [31]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater 23 3004

    [32]

    Grekov A A, Malitskaya M A, Spitsyna V D 1970 Sov. Phys. Crystallogr 15 423

    [33]

    Volk T R, Grekov A A, Kosonogov N A, Fridkin V M 1973 Sov. Phys. Solid State 14 2740

    [34]

    Stefanovich S Y, Malhasyan S S, Venevtsev Y N 1980 Ferroelectrics 29 59

    [35]

    Fridkin V M, Popov B N, Verkhovskaya K A 1978 Appl. Phys. 16 313

    [36]

    Fridkin V M, Popov B N 1978 Soviet Physics Uspekhi 21 981

    [37]

    Kraut W, Baltz R 1979 Phys. Rev. B 19 1548

    [38]

    Presting H, Von Baltz R 1982 Phys.Status.Solidi. B 112 559

    [39]

    Cho Y W, Choi S K, Vysochanskii Y M 2001 J. Mater. Res. 16 3317

    [40]

    Qin M, Yao K, Liang Y C 2009 Appl.Phys.Lett. 95 022912

    [41]

    Qin M, Yao K, Liang Y C 2008 Appl. Phys. Lett. 93 122904

    [42]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [43]

    Seidel J, Fu D, Yang S Y, Alarcón-Lladó.E, Wu J X, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805.

    [44]

    Studenyak I P, Mitrovcij V V, Kovacs G S 2001 Ferroelectrics 254 295

    [45]

    Gu B, Wang Y, Wang J, Ji W 2009 Opt.Express 17 10970

    [46]

    Huang H 2010 Nat.Photonics 4 134

    [47]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [48]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [49]

    Snaith H, Abate A, Ball J, Eperon G, Leijtens T, Noel N, Stranks S Wang J T, Wojciechowski K, Zhang W 2014 J. Phy. Chem. Lett. 5 1511

    [50]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A 2014 J. Phy. Chem. Lett. 5 2662

    [51]

    Nayak P, Bisquert J, Cahen D 2011 Adv. Mater. 23 2870

    [52]

    Hodes G 2013 Science 342 317

    [53]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [54]

    Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897

  • [1]

    Yu G, Gao J, Hummelen J C, Wudi F, Heeger A J 1995 Science-AAAS-Weekly Paper Edition 270 1789

    [2]

    O'regan B, Grfitzeli M 1991 nature 353 737

    [3]

    Shvydka D, Karpov V G 2008 Appl. Phys. Lett. 92 053507

    [4]

    Shvydka D, Karpov V G 2008 33th IEEE Photovoltaic Specialists Conference San Diego, CA, USA, May 11-16 2008 p1

    [5]

    Shvydka D, Karpov V G 2009 US Patent 2009094366

    [6]

    Jha R, Liu X, Wieland K, Ordosgoitti J, Paudel.N, Sun K, Commpaan A 2010 MRS Spring Meeting San Francisco, CA, USA, April 26, 2010 p1260

    [7]

    McCandless B E, Hanket G M, Jensen D G, Birkmire R W 2002 J. Vac. Sci. Technol. A 20 1462

    [8]

    Huang F, Liu X 2013 Appl.Phys. Lett. 102 103501

    [9]

    Huang F, Liu X, Wang W 2013 Prog. Photovolt: Res. Appl. DOI: 10.1002/pip.2432

    [10]

    Schmidt M E, Blanton S A, Hines M A, Guyot-Sionnest P 1997 J. Chem. Phys. 106 5254

    [11]

    Blanton S A, Leheny R L, Hines M A, Guyot-Sionnest P. 1997 Phys. Rev. Lett. 79 865

    [12]

    Shim M, Guyot-Sionnest P 1999 J. Chem. Phys. 111 6955

    [13]

    Zhang X, Zhang Z, Glotzer S C 2007 J. Chem. Phys. C 111 4132

    [14]

    Nalwa K S, Carr J A, Mahadevapuram R C, Kodali H K, Bose S, Chen Y Q, Petrich J W, Ganapathysubramanian B, Chaudhary S 2012 Energy Environ. Sci. 5 7042

    [15]

    Garbugli M, Porro M, Roiati V, Rizzo A, Gigli G, Petrozza A, Lanzani G 2012 Nanoscale 4 1728

    [16]

    Zi Li, Xu Zhang, Gang Lu 2012 J. Phys. Chem. C 116 9845

    [17]

    Buhbut S, Itzhakov S, Hod I, Oron D, Zaban A 2013 Nano Lett. 13 4456

    [18]

    Pan Z W, Dai Z R, Wang Z L 2001 Science 291 1947

    [19]

    Lu W, Lieber C M 2006 J. Phys. D. Appl. Phys. 39 387

    [20]

    Wang Z L 2008 Adv. Funct. Mater. 18 3553

    [21]

    Wang Z L 2007 Adv. Mater. 19 889

    [22]

    Wang Z L 2009 Materials Science and Engineering: Reports 64 33

    [23]

    Wang Z L 2010 J. Phys. Chem. Lett. 1 1388

    [24]

    Wang Z L, Song J 2006 Science 312.242

    [25]

    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102.

    [26]

    Qin Y, Wang X, Wang Z L 2008 Nature 451 809

    [27]

    Wang X, Wang X, Zhou J, Hui J, Liu J, Xu N S, Wang Z L 2006 Nano. Lett. 6 2768

    [28]

    He J H, Hsin C L, Liu J, Chen L J, Wang Z L 2007 Adv. Mater. 19 781

    [29]

    Lao C S, Kuang Q, Wang Z L, Pack M C, Deng Y L 2007 Appl. Phys. Lett 90 262107

    [30]

    Zhang Y, Yang Y, Wang Z L 2012 Energy Environ. Sci. 5 50

    [31]

    Zhang Y, Liu Y, Wang Z L 2011 Adv. Mater 23 3004

    [32]

    Grekov A A, Malitskaya M A, Spitsyna V D 1970 Sov. Phys. Crystallogr 15 423

    [33]

    Volk T R, Grekov A A, Kosonogov N A, Fridkin V M 1973 Sov. Phys. Solid State 14 2740

    [34]

    Stefanovich S Y, Malhasyan S S, Venevtsev Y N 1980 Ferroelectrics 29 59

    [35]

    Fridkin V M, Popov B N, Verkhovskaya K A 1978 Appl. Phys. 16 313

    [36]

    Fridkin V M, Popov B N 1978 Soviet Physics Uspekhi 21 981

    [37]

    Kraut W, Baltz R 1979 Phys. Rev. B 19 1548

    [38]

    Presting H, Von Baltz R 1982 Phys.Status.Solidi. B 112 559

    [39]

    Cho Y W, Choi S K, Vysochanskii Y M 2001 J. Mater. Res. 16 3317

    [40]

    Qin M, Yao K, Liang Y C 2009 Appl.Phys.Lett. 95 022912

    [41]

    Qin M, Yao K, Liang Y C 2008 Appl. Phys. Lett. 93 122904

    [42]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [43]

    Seidel J, Fu D, Yang S Y, Alarcón-Lladó.E, Wu J X, Ramesh R, Ager J W 2011 Phys. Rev. Lett. 107 126805.

    [44]

    Studenyak I P, Mitrovcij V V, Kovacs G S 2001 Ferroelectrics 254 295

    [45]

    Gu B, Wang Y, Wang J, Ji W 2009 Opt.Express 17 10970

    [46]

    Huang H 2010 Nat.Photonics 4 134

    [47]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [48]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [49]

    Snaith H, Abate A, Ball J, Eperon G, Leijtens T, Noel N, Stranks S Wang J T, Wojciechowski K, Zhang W 2014 J. Phy. Chem. Lett. 5 1511

    [50]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A 2014 J. Phy. Chem. Lett. 5 2662

    [51]

    Nayak P, Bisquert J, Cahen D 2011 Adv. Mater. 23 2870

    [52]

    Hodes G 2013 Science 342 317

    [53]

    Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H 2012 Science 338 643

    [54]

    Edri E, Kirmayer S, Cahen D, Hodes G 2013 J. Phys. Chem. Lett. 4 897

  • [1] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] Luo Pan, Li Xiang, Sun Xue-Yin, Tan Xiao-Hong, Luo Jun, Zhen Liang. Effect of electron irradiation on perovskite films and devices for novel space solar cells. Acta Physica Sinica, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [3] Zhu Xiao-Li, Qiu Peng, Wei Hui-Yun, He Ying-Feng, Liu Heng, Tian Feng, Qiu Hong-Yu, Du Meng-Chao, Peng Ming-Zeng, Zheng Xin-He. Theoretical analysis of GaN-based semiconductor in changing performanc of perovskite solar cell. Acta Physica Sinica, 2023, 72(10): 107702. doi: 10.7498/aps.72.20230100
    [4] Zhou Yang, Ren Xin-Gang, Yan Ye-Qiang, Ren Hao, Du Hong-Mei, Cai Xue-Yuan, Huang Zhi-Xiang. Physical mechanism of perovskite solar cell based on double electron transport layer. Acta Physica Sinica, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [5] Liu Hui-Cheng, Xu Jia-Xiong, Lin Jun-Hui. Numerical analysis of Cu2ZnSnS4 solar cells on Si substrate. Acta Physica Sinica, 2021, 70(10): 108801. doi: 10.7498/aps.70.20201936
    [6] Li Ye, Wang Xi-Xi, Wei Hui-Yun, Qiu Peng, He Ying-Feng, Song Yi-Meng, Duan Zhang, Shen Cheng-Tao, Peng Ming-Zeng, Zheng Xin-He. Enhancement of interface transportation for quantum dot solar cells using ultrathin InN by atomic layer deposition. Acta Physica Sinica, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [7] Wang Pei-Pei, Zhang Chen-Xi, Hu Li-Na, Li Shi-Qi, Ren Wei-Hua, Hao Yu-Ying. Research progress of inverted planar perovskite solar cells based on nickel oxide as hole transport layer. Acta Physica Sinica, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [8] Zhang Ao, Zhang Chun-Xiu, Chen Yun-Lin, Zhang Chun-Mei, Meng Tao. Theoretical study of photovoltaic performance for inverted halide perovskite solar cells. Acta Physica Sinica, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [9] Xia Jun-Min, Liang Chao, Xing Gui-Chuan. Inkjet printed perovskite solar cells: progress and prospects. Acta Physica Sinica, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [10] Chai Lei, Zhong Min. Recent research progress in perovskite solar cells. Acta Physica Sinica, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [11] Liu Zhi-Fang, Zhao Su-Ling, Xu Zheng, Yang Qian-Qian, Zhao Ling, Liu Zhi-Min, Chen Hai-Tao, Yang Yi-Fan, Gao Song, Xu Xu-Rong. Enhancement of performance of P3HT:PCBM based polymer solar cell by Ag2O/PEDOT:PSS composite buffer layer. Acta Physica Sinica, 2014, 63(6): 068402. doi: 10.7498/aps.63.068402
    [12] Sun Kai, He Zhi-Qun, Liang Chun-Jun. Effect of multiple temperature-step annealing on the performances of polymer solar cells. Acta Physica Sinica, 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [13] Liu Zhen, Wang Yu-Xiao, Song Ying-Lin, Zhang Xue-Ru. Nano surface two-dimensional periodic half-round grooves enhanced light absorption in silicon film solar cell. Acta Physica Sinica, 2013, 62(16): 167801. doi: 10.7498/aps.62.167801
    [14] Li Guo-Long, He Li-Jun, Li Jin, Li Xue-Sheng, Liang Sen, Gao Mang-Mang, Yuan Hai-Wen. Light absorption enhancement in polymer solar cells with nano-Ag. Acta Physica Sinica, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [15] Li Guo-Long, Li Jin. The light absorption enhancement in polymer solar cells with periodic nano-structures gratings. Acta Physica Sinica, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [16] Pan Hui-Ping, Bo Lian-Kun, Huang Tai-Wu, Zhang Yi, Yu Tao, Yao Shu-De. Structural analysis of Cu(In1-xGax)Se2 multi-layer thin film solar cells. Acta Physica Sinica, 2012, 61(22): 228801. doi: 10.7498/aps.61.228801
    [17] Hao Zhi-Hong, Hu Zi-Yang, Zhang Jian-Jun, Hao Qiu-Yan, Zhao Ying. Influence of doped PEDOT ∶PSS on performance of polymer solar cells. Acta Physica Sinica, 2011, 60(11): 117106. doi: 10.7498/aps.60.117106
    [18] Li Yan-Wu, Liu Peng-Yi, Hou Lin-Tao, Wu Bing. Heterojunction organic solar cells with Rubrene as electron transporting layer. Acta Physica Sinica, 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] Xing Hong-Wei, Peng Ying-Quan, Yang Qing-Sen, Ma Chao-Zhu, Wang Run-Sheng, Li Xun-Shuan. Simulation of polymer-fullerene bulk heterojunction solar cell. Acta Physica Sinica, 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [20] Hao Hui-Ying, Kong Guang-Lin, Zeng Xiang-Bo, Xu Ying, Diao Hong-Wei, Liao Xian-Bo. Transition films from amporphous to microcrystalline silicon and solar cells. Acta Physica Sinica, 2005, 54(7): 3327-3331. doi: 10.7498/aps.54.3327
Metrics
  • Abstract views:  6907
  • PDF Downloads:  1609
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2014
  • Accepted Date:  13 December 2014
  • Published Online:  05 February 2015

/

返回文章
返回