Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds

Yang Zhen-Qing Bai Xiao-Hui Shao Chang-Jin

Citation:

Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds

Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we have designed a new (TiO2)12 quantum ring structure and studied its geometry, average binding energy, and the electron density distributions using the generalized gradient approximation (GGA), which is based on the density functional theory (DFT) with the first-principles calculations. This new quantum ring structure is doped with transition metal compounds MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 respectively, to modify its properties. Thus we can calculate and analyze their geometrics and electronic properties (such as average binding energies, energy levels, electronic density of states and the HOMO-LUMO electron density distributionsatc). We find that the (TiO2)12 quantum ring with a diameter of 1.059 nm seems to be of a two-dimensional structure with a center symmety which ensurs it a stable structure. In addition, the HOMO-LUMO orbital electron density in the quantum ring distributes evenly, and its energy gap is 3.17 eV which is very close to the experimental value of TiO2 semiconductor materials (3.2 eV). The energy gaps decrease substantially after introducing the transition metal compounds into the quantum ring. Among these results, the ring doped with WTe2 has the smallest energy gap (0.61 eV), and that with MoTe2 has the biggest energy gap (1.16 eV), but it is still smaller by about 2 eV than that of the (TiO2)12 quantum ring. Furthermore, other doping results have energy gap variation around 1 eV. The TiO2 clusters with this energy gap could make use most of the solar energy and so expand applications of TiO2.
    • Funds: Project supported by the Basic Scientific Research Fund of China University of Petroleum (Beijing) (Grant No. KYJJ2012-06-26), and the Key Project of Science and Technology of Ministry of Education (Grant No. 108023).
    [1]

    Yin W J, Wei S H, Al-Jassim M M, Yan Y F 2011 Phys. Rev. Lett. 106 066801

    [2]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys.-Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [3]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [4]

    Wu G H, Zheng S K, Liu L, Jia C J 2012 Acta Phys. Sin. 61 223101 (in Chinese) [吴国浩, 郑树凯, 刘磊, 贾长江 2012 物理学报 61 223101]

    [5]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [7]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [8]

    Yu J X, Fu M, Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Zhai H J, Wang L S 2007 J. Am. Chem. Soc. 129 3022

    [11]

    Yang K S 2010 Ph. D. Dissertation (Shandong: Shandong University) (in Chinese) [杨可松 2010 博士学位论文(山东: 山东大学)]

    [12]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synth. Cryst. 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [13]

    Zhang D, Sun H, Liu J, Liu C 2008 J. Phys. Chem. C 113 21

    [14]

    Jin S, Shireaishi F 2004 J. Chem. Engineering 97 203

    [15]

    Peng L P, Xia Z C, Yang C Q 2012 Acta Phys. Sin. 61 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权 2012 物理学报 61 127104]

    [16]

    Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H 2007 J. Phys. Chem. C 111 11836

    [17]

    Park J H, Kim S, Bard A J 2005 Nano Lett. 6 24

    [18]

    Tang X H, Li D Y 2008 J. Phys. Chem. C 112 5405

    [19]

    Vitiello R P, Macak J M, Ghicov A, Tsuchiya H, Dick L F P, Schmuki P 2006 Electrochem. Commun. 8 544

    [20]

    Liu H J, Liu G G, Zhou Q X 2009 J. Solid. State. Chem. 182 3238

    [21]

    Sun L, Li J, Wang C L, Li S F, Chen H B, Lin C J 2009 Sol. Energy Mater. Sol. Cells 93 1875

    [22]

    Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chen H B, Lin C J 2010 Electrochim. Acta 55 7211

    [23]

    Mohapatra S K, Kondamudi N, Banerjee S, Misra M 2008 Langmuir 24 11276

    [24]

    Wang C L, Sun L, Yun H, Li J, Lai Y K, Lin C J 2009 Nanotechnology 20 295601

    [25]

    Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H 2010 Adv. Funct. Mater. 20 2165

    [26]

    Zhu K, Neale N R, Miedaner A, Frank A J 2006 Nano Lett. 7 69

    [27]

    Wang J, Lin Z Q 2009 Chem. Mater. 22 579

    [28]

    Ye M D, Xin X K, Lin C J, Lin Z Q 2011 Nano Lett. 11 3214

    [29]

    Zhang N X, Xu M X, Li X L, Liu Z X, Li S 2008 J. Chin. Ceram. Soc. 36 25 (in Chinese) [张念星, 徐明霞, 李晓雷, 刘祥志, 李顺 2008 硅酸盐学报 36 25]

    [30]

    Yang Z Q, Zheng W W, Shao C J 2014 J. Synth. Cryst. 43 375 (in Chinese) [杨振清, 郑文文, 邵长金 2014 人工晶体学报 43 375]

    [31]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [32]

    Gai Y, Li J, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [33]

    Zhang S, Zhang Y, Huang S, Liu H, Wang P, Tian H 2011 J. Mater. Chem. 21 16905

    [34]

    Labat F, Le Bahers T, Ciofini I, Adamo C 2012 J. Adhes. 45 1268

    [35]

    Cao L T 1998 Journal of Neijiang Normal University 13 15 (in Chinese) [曹良腾 1998 内江师专学报 13 15]

    [36]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]

  • [1]

    Yin W J, Wei S H, Al-Jassim M M, Yan Y F 2011 Phys. Rev. Lett. 106 066801

    [2]

    Xu L, Tang C Q, Huang Z B 2010 Acta Phys.-Chim. Sin. 26 1401 (in Chinese) [徐凌, 唐超群, 黄宗斌 2010 物理化学学报 26 1401]

    [3]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [4]

    Wu G H, Zheng S K, Liu L, Jia C J 2012 Acta Phys. Sin. 61 223101 (in Chinese) [吴国浩, 郑树凯, 刘磊, 贾长江 2012 物理学报 61 223101]

    [5]

    Zhu J, Yu J X, Wang Y J, Chen X R, Jing F Q 2008 Chin. Phys. B 17 2216

    [6]

    Sun H W, Zhang X J, Zhang Z Y, Chen Y S, Crittenden J C 2009 Environ. Pollut. 157 1165

    [7]

    Khan S U M, Al-Shahry M, Ingler W B 2002 Science 297 2243

    [8]

    Yu J X, Fu M, Ji G F, Chen X R 2009 Chin. Phys. B 18 269

    [9]

    Chen F, Zou W W, Qu W W, Zhang J L 2009 Catal. Commun. 10 1510

    [10]

    Zhai H J, Wang L S 2007 J. Am. Chem. Soc. 129 3022

    [11]

    Yang K S 2010 Ph. D. Dissertation (Shandong: Shandong University) (in Chinese) [杨可松 2010 博士学位论文(山东: 山东大学)]

    [12]

    Chen J, Yan F N, Liang L P, Liu T Y, Geng T 2011 J. Synth. Cryst. 40 758 (in Chinese) [陈俊, 严非男, 梁丽萍, 刘廷禹, 耿滔 2011 人工晶体学报 40 758]

    [13]

    Zhang D, Sun H, Liu J, Liu C 2008 J. Phys. Chem. C 113 21

    [14]

    Jin S, Shireaishi F 2004 J. Chem. Engineering 97 203

    [15]

    Peng L P, Xia Z C, Yang C Q 2012 Acta Phys. Sin. 61 127104 (in Chinese) [彭丽萍, 夏正才, 杨昌权 2012 物理学报 61 127104]

    [16]

    Lu N, Quan X, Li J Y, Chen S, Yu H T, Chen G H 2007 J. Phys. Chem. C 111 11836

    [17]

    Park J H, Kim S, Bard A J 2005 Nano Lett. 6 24

    [18]

    Tang X H, Li D Y 2008 J. Phys. Chem. C 112 5405

    [19]

    Vitiello R P, Macak J M, Ghicov A, Tsuchiya H, Dick L F P, Schmuki P 2006 Electrochem. Commun. 8 544

    [20]

    Liu H J, Liu G G, Zhou Q X 2009 J. Solid. State. Chem. 182 3238

    [21]

    Sun L, Li J, Wang C L, Li S F, Chen H B, Lin C J 2009 Sol. Energy Mater. Sol. Cells 93 1875

    [22]

    Xie K P, Sun L, Wang C L, Lai Y K, Wang M Y, Chen H B, Lin C J 2010 Electrochim. Acta 55 7211

    [23]

    Mohapatra S K, Kondamudi N, Banerjee S, Misra M 2008 Langmuir 24 11276

    [24]

    Wang C L, Sun L, Yun H, Li J, Lai Y K, Lin C J 2009 Nanotechnology 20 295601

    [25]

    Hou Y, Li X Y, Zhao Q D, Quan X, Chen G H 2010 Adv. Funct. Mater. 20 2165

    [26]

    Zhu K, Neale N R, Miedaner A, Frank A J 2006 Nano Lett. 7 69

    [27]

    Wang J, Lin Z Q 2009 Chem. Mater. 22 579

    [28]

    Ye M D, Xin X K, Lin C J, Lin Z Q 2011 Nano Lett. 11 3214

    [29]

    Zhang N X, Xu M X, Li X L, Liu Z X, Li S 2008 J. Chin. Ceram. Soc. 36 25 (in Chinese) [张念星, 徐明霞, 李晓雷, 刘祥志, 李顺 2008 硅酸盐学报 36 25]

    [30]

    Yang Z Q, Zheng W W, Shao C J 2014 J. Synth. Cryst. 43 375 (in Chinese) [杨振清, 郑文文, 邵长金 2014 人工晶体学报 43 375]

    [31]

    Zheng W W, Yang Z Q, Shao C J, Lu G W 2013 J. Synth. Cryst. 42 119 (in Chinese) [郑文文, 杨振清, 邵长金, 卢贵武 2013 人工晶体学报 42 119]

    [32]

    Gai Y, Li J, Li S S, Xia J B, Wei S H 2009 Phys. Rev. Lett. 102 036402

    [33]

    Zhang S, Zhang Y, Huang S, Liu H, Wang P, Tian H 2011 J. Mater. Chem. 21 16905

    [34]

    Labat F, Le Bahers T, Ciofini I, Adamo C 2012 J. Adhes. 45 1268

    [35]

    Cao L T 1998 Journal of Neijiang Normal University 13 15 (in Chinese) [曹良腾 1998 内江师专学报 13 15]

    [36]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]

  • [1] Dong Xiao. Density functional theory on reaction mechanism between p-doped LiNH2 clusters and LiH and a new hydrogen storage and desorption mechanism. Acta Physica Sinica, 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [2] Luan Xiao-Wei, Sun Jian-Ping, Wang Fan-Song, Wei Hui-Lan, Hu Yi-Fan. Density functional study of metal lithium atom adsorption on antimonene. Acta Physica Sinica, 2019, 68(2): 026802. doi: 10.7498/aps.68.20181648
    [3] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [5] Dai Guang-Zhen, Jiang Xian-Wei, Xu Tai-Long, Liu Qi, Chen Jun-Ning, Dai Yue-Hua. Effect of oxygen vacancy on lattice and electronic properties of HfO2 by means of density function theory study. Acta Physica Sinica, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [6] Li Zong-Bao, Wang Xia, Fan Shuai-Wei. Research of the synergistic effects in Cu/N co-doped TiO2 surface:A DFT calculation. Acta Physica Sinica, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [7] Lü Jin, Yang Li-Jun, Wang Yan-Fang, Ma Wen-Jin. Density functional theory study of structure characteristics and stabilities of Al2Sn(n=2-10) clusters. Acta Physica Sinica, 2014, 63(16): 163601. doi: 10.7498/aps.63.163601
    [8] Zhang Bei, Bao An, Chen Chu, Zhang Jun. Density-functional theory study of ConCm (n=15, m=1,2) clusters. Acta Physica Sinica, 2012, 61(15): 153601. doi: 10.7498/aps.61.153601
    [9] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [10] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [11] Lin Feng, Zheng Fa-Wei, Ouyang Fang-Ping. A density functional theory study on water adsorption on TiO2-terminated SrTiO3(001) surface. Acta Physica Sinica, 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [12] Ding Bin-Gang, Zhang Da-Li, Lu Ding-Hui. A systematic study on nuclear pairing energy under the relativistic mean-field model. Acta Physica Sinica, 2009, 58(9): 6086-6090. doi: 10.7498/aps.58.6086
    [13] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Yuan Li-Hua, Li Yan-Long. Density functional theory study on the structures and properties of (Ca3N2)n(n=1—4) clusters. Acta Physica Sinica, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [14] Li Xi-Bo, Luo Jiang-Shan, Guo Yun-Dong, Wu Wei-Dong, Wang Hong-Yan, Tang Yong-Jian. Density functional theory study of the stability, electronic and magnetic properties of Scn, Yn and Lan (n=2—10) clusters. Acta Physica Sinica, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [15] Chen Yu-Hong, Kang Long, Zhang Cai-Rong, Luo Yong-Chun, Ma Jun. Density functional theory study of [Mg(NH2)2]n(n=1—5) clusters. Acta Physica Sinica, 2008, 57(8): 4866-4874. doi: 10.7498/aps.57.4866
    [16] Liang Yong-Cheng, Guo Wan-Lin, Fang Zhong. First principles studies of low-compressibility of transition-metal compounds OsB2 and OsO2. Acta Physica Sinica, 2007, 56(8): 4847-4855. doi: 10.7498/aps.56.4847
    [17] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [18] Tan Ming-Qiu, Tao Xiang-Ming, Xu Xiao-Jun, Cai Jian-Qiu. Density functional theory study on the electronic structure of UAl3 a nd USn3. Acta Physica Sinica, 2003, 52(12): 3142-3149. doi: 10.7498/aps.52.3142
    [19] Yang Dong-Sheng, Wu Bai-Mei, Li Bo, Zheng Wei-Hua, Li Shi-Yan, Fan Rong, Chen Xian-Hui, Cao Lie-Zhao. Thermal conductivity of two-energy-gap superconductor MgB2. Acta Physica Sinica, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [20] . Acta Physica Sinica, 2002, 51(2): 342-346. doi: 10.7498/aps.51.342
Metrics
  • Abstract views:  5360
  • PDF Downloads:  496
  • Cited By: 0
Publishing process
  • Received Date:  24 September 2014
  • Accepted Date:  19 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回