Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance

Ye Peng-Fei Chen Hai-Tao Bu Liang-Min Zhang Kun Han Jiu-Rong

Citation:

Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance

Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With SnCl4·5H2O and graphene oxide as raw materials and aqueous solution of ethanol as the solvent, we have prepared SnO2 quantum dots (diameter about 3-5 nm)/graphene nanocomposites using a facile hydrothermal method in one step, and solved the reunion of quantum dots successfully. The visible-light-driven photocatalytic efficiency of SnO2 quantum dots depends to a great extent on their dispersity. Because of the large-sized two-dimensional surface, the graphene sheet could behave as a solid support for quantum dots through interfacial interaction to avoid particle aggregation. Composites of SnO2 quantum dot/graphene show a great photocatalytic performance in visible light, and the morphology and structure of the product are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared Spectrometer (FT-IR) and other techniques. The optical properties are investigated by using UV-visible (UV-vis) absorption spectrum. Additionally, the photocatalytic activity of the product is measured by the degradation of rhodamine-B dye solution in visible light. Results show that the preparation of samples with high catalytic activity in visible light, the shift in the optical response of composites may produce a positive effect on the improvement of photocatalytic efficiency in UV to visible spectral range Moreover, owing to its special π-conjugation structure, large specific surface area as well as high conductivity, graphene can enhance the photocatalytic activity. Compared with the pure SnO2, pure graphene catalytic performance is greatly improved in visible light, its excellent photocatalytic activity is due to the combination of strong absorption and effective separation of photogenerated carriers in the samples. Finally, the formation mechanism of the composite and its photocatalytic mechanism are studied.
    • Funds: Projec supported by the National Natural Science Foundation of China (Grant Nos. 10647144, 11004170).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584

    [3]

    Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613

    [4]

    Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249

    [5]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411

    [6]

    Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274

    [7]

    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812

    [8]

    Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893

    [9]

    Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690

    [10]

    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820

    [11]

    Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528

    [12]

    Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467

    [13]

    Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148

    [14]

    Jiang Z, Shangguan W F 2015 Catalysis Today 242 372

    [15]

    Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]

    [16]

    Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]

    [19]

    Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]

    [20]

    Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303

    [21]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [22]

    Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711

    [23]

    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705

    [24]

    Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360

    [25]

    Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634

    [26]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [27]

    Geim A K 2009 Science 324 1530

    [28]

    Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666

    [29]

    Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339

    [30]

    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227

    [31]

    Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584

    [3]

    Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613

    [4]

    Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249

    [5]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411

    [6]

    Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274

    [7]

    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812

    [8]

    Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893

    [9]

    Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690

    [10]

    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820

    [11]

    Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528

    [12]

    Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467

    [13]

    Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148

    [14]

    Jiang Z, Shangguan W F 2015 Catalysis Today 242 372

    [15]

    Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]

    [16]

    Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]

    [19]

    Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]

    [20]

    Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303

    [21]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [22]

    Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711

    [23]

    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705

    [24]

    Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360

    [25]

    Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634

    [26]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [27]

    Geim A K 2009 Science 324 1530

    [28]

    Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666

    [29]

    Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339

    [30]

    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227

    [31]

    Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324

  • [1] Wei Ning, Zhao Si-Han, Li Zhi-Hui, Ou Bing-Xian, Hua An-Ping, Zhao Jun-Hua. Effects of graphene size and arrangement on crack propagation of graphene/aluminum composites. Acta Physica Sinica, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [2] Cui Yan, Xia Cai-Juan, Su Yao-Heng, Zhang Bo-Qun, Zhang Ting-Ting, Liu Yang, Hu Zhen-Yang, Tang Xiao-Jie. Switching characteristics of anthraquinone molecular devices based on graphene electrodes. Acta Physica Sinica, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [3] Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian. Friction properties of suspended graphene. Acta Physica Sinica, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [4] Wang Bo, Zhang Ji-Hong, Li Cong-Ying. Enhancement of near-field thermal radiation of semiconductor vanadium dioxide covered by graphene. Acta Physica Sinica, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [5] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [6] Zhang Xiao-Bo, Qing Fang-Zhu, Li Xue-Song. Clean transfer of chemical vapor deposition graphene film. Acta Physica Sinica, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] Guo Wei-Ling, Deng Jie, Wang Jia-Lu, Wang Le, Tai Jian-Peng. GaN-based light emitting diode with graphene/indium antimony oxide composite transparent electrode. Acta Physica Sinica, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [8] Cui Shu-Wen, Li Lu, Wei Lian-Jia, Qian Ping. Theoretical study of density functional of confined CO oxidation reaction between bilayer graphene. Acta Physica Sinica, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] Lu Qi, Lyu Hong-Ming, Wu Xiao-Ming, Wu Hua-Qiang, Qian He. Research progress of graphene radio frequency devices. Acta Physica Sinica, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [10] Qin Zhi-Hui. Recent progress of graphene-like germanene. Acta Physica Sinica, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [11] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [12] Liu Xue-Wen, Zhu Chong-Yang, Dong Hui, Xu Feng, Sun Li-Tao. Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells. Acta Physica Sinica, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [13] Yu Zhong, Dang Zhong, Ke Xi-Zheng, Cui Zhen. Optical and electronic properties of N/B doped graphene. Acta Physica Sinica, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [14] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [15] Lu Xiao-Bo, Zhang Guang-Yu. Graphene/h-BN Moiré superlattice. Acta Physica Sinica, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [16] Ye Zhen-Qiang, Cao Bing-Yang, Guo Zeng-Yuan. Study on thermal characteristics of phonons in graphene. Acta Physica Sinica, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [18] Yu Hai-Ling, Zhu Jia-Qi, Cao Wen-Xin, Han Jie-Cai. Process in preparation of metal-catalyzed graphene. Acta Physica Sinica, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [19] Han Tong-Wei, He Peng-Fei. Molecular dynamics simulation of relaxation properties of graphene sheets. Acta Physica Sinica, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] Lin Tao, Wan Neng, Han Min, Xu Jun, Chen Kun-Ji. Synthesis,structures and luminescence properties of SnO2 nanoparticles. Acta Physica Sinica, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
Metrics
  • Abstract views:  5901
  • PDF Downloads:  551
  • Cited By: 0
Publishing process
  • Received Date:  19 January 2015
  • Accepted Date:  02 February 2015
  • Published Online:  05 April 2015

/

返回文章
返回