Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide

Sun Jie Yang Jian-Feng Yan Su Yang Jing-Jing Huang Ming

Citation:

Transmission characteristics and potential applications of plasmon-assisted parallel-plated waveguide

Sun Jie, Yang Jian-Feng, Yan Su, Yang Jing-Jing, Huang Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Flexible control of terahertz waves is now a research hotspot. Based on the electromagnetic theory the dispersion relation and field distributions in a plasmon-assisted parallel-plated waveguide are deduced. The transmission property of such a waveguide is obtained and confirmed by the full-wave simulation. Results show that the plasmon-assisted parallel-plated waveguide shows a band gap characteristic, and the cutoff frequency of the upper sideband is equal to the plasmon frequency; generally, the thinner the plasmon layer, the higher the cutoff frequency will be, and the narrower the bandwidth will become. Emergence of the band gap is due to the excited surface plasmon polaritons, and the coupling between surface plasmon and the medium in the waveguide. Besides, the influence of plasmon frequency and collision frequency on the transmission properties is investigated, and a method for adjusting the filter characteristic of the waveguide by tuning the plasmon frequency is proposed. Moreover, the plasmon layer is realized by a textured metallic structure, and a sensing model based on the parallel-plated waveguide is designed. Simulation results show that a 0.1 percent change in permittivity of the sample materials filling in the groove will give rise to a significant change of the cutoff frequency, which is 1.8 GHz in average; interestingly, different liquid samples such as nitrogen, gasoline, paraffin, glycerine and water can be identified through detecting the change of cutoff frequency, which further confirms the excellent terahertz sensing characteristic of the proposed sensor. This work may be helpful for the study of terahertz wave transmission, and may have potential applications in the design of terahertz devices.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61161007, 61261002, 61461052), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20135301110003, 20125301120009), the China Postdoctoral Science Foundation (Grant Nos. 2013M531989, 2014T70890), and the Key Program of Natural Science of Yunnan Province, China (Grant No. 2013FA006).
    [1]

    Shaghik A, Shahraam A V, Tanya M M, Derek A 2013 Advances in Optics and Photonics 5 169

    [2]

    Chen P Y, Huang H Y, Akinwande D, Alu A 2014 ACS Photonics 1 647

    [3]

    Pozar N M 2007 Microwave Engineering (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [张肇仪, 周乐柱, 吴德明等译2007微波工程(北京: 电子工业出版社)第83页]

    [4]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [5]

    Mendis R, Mittleman D M 2009 Opt. Express 17 14839

    [6]

    Astley V, Reichel K S, Jones J, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 231108

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [8]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [9]

    Luo J, Lu W X, Hang Z H, Chen H Y, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903

    [10]

    Ourir A, Maurel A, Pagneux V 2013 Opt. Lett. 38 2092

    [11]

    Wu Z Y, Huang M, Yang J J, Yu J, Peng J H 2009 Chinese Journal of Lasers 36 458 (in Chinese) [吴中元, 黄铭, 杨晶晶, 余江, 彭金辉 2009 中国激光 36 458]

    [12]

    Li D Y, Li E P 2013 Opt. Lett. 38 3384

    [13]

    Bahadori M, Eshaghian A, Mehrany K 2014 Journal of lightwave technology 32 2659

    [14]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [15]

    Han B, Jiang C 2009 Appl. Phys. B 95 97

    [16]

    Li J F, Li Z Y 2014 Chin. Phys. B 23 047305

    [17]

    Xu Y D, Wu Q N, Chen H Y 2014 Laser Photonics Reviews 8 562

    [18]

    Akyildiz I F, Jornet J M, Han C 2014 Physical Communication 12 16

    [19]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209 (in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

    [20]

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J Guang 2014 Acta Phys. Sin. 63 133203 (in Chinese) [杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203]

    [21]

    Tonouchi M 2007 Nature Photonics 1 97

    [22]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007太赫兹科学技术与应用(北京: 北京大学出版社)第9页]

    [23]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2007 J. Opt. A: Pure Appl. Opt. 7 S97

    [24]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Optical Mater. 1 543

  • [1]

    Shaghik A, Shahraam A V, Tanya M M, Derek A 2013 Advances in Optics and Photonics 5 169

    [2]

    Chen P Y, Huang H Y, Akinwande D, Alu A 2014 ACS Photonics 1 647

    [3]

    Pozar N M 2007 Microwave Engineering (Beijing: Publishing House of Electronics Industry) p83 (in Chinese) [张肇仪, 周乐柱, 吴德明等译2007微波工程(北京: 电子工业出版社)第83页]

    [4]

    Mendis R, Grischkowsky D 2001 Opt. Lett. 26 846

    [5]

    Mendis R, Mittleman D M 2009 Opt. Express 17 14839

    [6]

    Astley V, Reichel K S, Jones J, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 231108

    [7]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [8]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [9]

    Luo J, Lu W X, Hang Z H, Chen H Y, Hou B, Lai Y, Chan C T 2014 Phys. Rev. Lett. 112 073903

    [10]

    Ourir A, Maurel A, Pagneux V 2013 Opt. Lett. 38 2092

    [11]

    Wu Z Y, Huang M, Yang J J, Yu J, Peng J H 2009 Chinese Journal of Lasers 36 458 (in Chinese) [吴中元, 黄铭, 杨晶晶, 余江, 彭金辉 2009 中国激光 36 458]

    [12]

    Li D Y, Li E P 2013 Opt. Lett. 38 3384

    [13]

    Bahadori M, Eshaghian A, Mehrany K 2014 Journal of lightwave technology 32 2659

    [14]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [15]

    Han B, Jiang C 2009 Appl. Phys. B 95 97

    [16]

    Li J F, Li Z Y 2014 Chin. Phys. B 23 047305

    [17]

    Xu Y D, Wu Q N, Chen H Y 2014 Laser Photonics Reviews 8 562

    [18]

    Akyildiz I F, Jornet J M, Han C 2014 Physical Communication 12 16

    [19]

    Lan F, Gao X, Qi L M 2014 Acta Phys. Sin. 63 104209 (in Chinese) [兰峰, 高喜, 亓丽梅 2014 物理学报 63 104209]

    [20]

    Yang J Q, Li S X, Zhao H W, Zhang J B, Yang N, Jing D D, Wang C Y, Han J Guang 2014 Acta Phys. Sin. 63 133203 (in Chinese) [杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广 2014 物理学报 63 133203]

    [21]

    Tonouchi M 2007 Nature Photonics 1 97

    [22]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Beijing University Press) p9 (in Chinese) [许景周, 张希成2007太赫兹科学技术与应用(北京: 北京大学出版社)第9页]

    [23]

    Garcia-Vidal F J, Martin-Moreno L, Pendry J B 2007 J. Opt. A: Pure Appl. Opt. 7 S97

    [24]

    Ng B H, Wu J F, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M H, Maier S A 2013 Adv. Optical Mater. 1 543

  • [1] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [3] Ge Hong-Yi, Li Li, Jiang Yu-Ying, Li Guang-Ming, Wang Fei, Lü Ming, Zhang Yuan, Li Zhi. Double-opening metal ring based terahertz metamaterial absorber sensor. Acta Physica Sinica, 2022, 71(10): 108701. doi: 10.7498/aps.71.20212303
    [4] Ding Zi-Ping, Liao Jian-Fei, Zeng Ze-Kai. A new type of ultra-broadband microstructured fiber sensor based on surface plasmon resonance. Acta Physica Sinica, 2021, 70(7): 074207. doi: 10.7498/aps.70.20201477
    [5] Pang Hui-Zhong, Wang Xin, Wang Jun-Lin, Wang Zong-Li, Liu Su-Yalatu, Tian Hu-Qiang. Sensing characteristics of dual band terahertz metamaterial absorber sensor. Acta Physica Sinica, 2021, 70(16): 168101. doi: 10.7498/aps.70.20210062
    [6] Wang Fang, Zhang Long, Ma Tao, Wang Xu, Liu Yu-Fang, Ma Chun-wang. A symmetrical wedge-to-wedge THz hybrid SPPs waveguidewith low propagation loss. Acta Physica Sinica, 2020, 69(7): 074205. doi: 10.7498/aps.69.20191666
    [7] Yang Lei, Fan Fei, Chen Meng, Zhang Xuan-Zhou, Chang Sheng-Jiang. Multifunctional metasurfaces for terahertz polarization controller. Acta Physica Sinica, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [8] Li Dan, Liu Yong, Wang Huai-Xing, Xiao Long-Sheng, Ling Fu-Ri, Yao Jian-Quan. Gain characteristics of grapheme plasmain terahertz range. Acta Physica Sinica, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [9] Qiao Wen-Tao, Gong Jian, Zhang Li-Wei, Wang Qin, Wang Guo-Dong, Lian Shu-Peng, Chen Peng-Hui, Meng Wei-Wei. Propagation properties of the graphene surface plasmon in comb-like waveguide. Acta Physica Sinica, 2015, 64(23): 237301. doi: 10.7498/aps.64.237301
    [10] Luo Xue-Xue, Chen Jia-Bi, Hu Jin-Bing, Liang Bin-Ming, Jiang Qiang. Analysis and experimental investigation of the temperature property of sensors based on symmetrical metal-cladding optical waveguide. Acta Physica Sinica, 2015, 64(23): 234208. doi: 10.7498/aps.64.234208
    [11] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. Effect of Ohmic loss on coaxial surface wave oscillator in terahertz band. Acta Physica Sinica, 2015, 64(7): 070703. doi: 10.7498/aps.64.070703
    [12] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [13] Liao Wen-Ying, Fan Wan-De, Li Hai-Peng, Sui Jia-Nan, Cao Xue-Wei. Quasi-crystal photonic fiber surface plasmon resonance sensor. Acta Physica Sinica, 2015, 64(6): 064213. doi: 10.7498/aps.64.064213
    [14] Chen Zai-Gao, Wang Jian-Guo, Wang Guang-Qiang, Li Shuang, Wang Yue, Zhang Dian-Hui, Qiao Hai-Liang. A 0.14 THz coaxial surface wave oscillator. Acta Physica Sinica, 2014, 63(11): 110703. doi: 10.7498/aps.63.110703
    [15] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [16] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [17] Hu Hai-Feng, Cai Li-Kang, Bai Wen-Li, Zhang Jing, Wang Li-Na, Song Guo-Feng. Simulation research on the control of terahertz beam direction by surface plasmon. Acta Physica Sinica, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [18] Li Hua, Han Ying-Jun, Tan Zhi-Yong, Zhang Rong, Cao Jun-Cheng. Device fabrication of semi-insulating surface-plasmon terahertz quantum-cascade lasers. Acta Physica Sinica, 2010, 59(3): 2169-2172. doi: 10.7498/aps.59.2169
    [19] Zhou Ren-Long, Chen Xiao-Shuang, Zeng Yong, Zhang Jian-Biao, Chen Hong-Bo, Wang Shao-Wei, Lu Wei, Li Hong-Jian, Xia Hui, Wang Ling-Ling. Enhanced transmission through metal-film hole arrays and the surface plasmon resonance. Acta Physica Sinica, 2008, 57(6): 3506-3513. doi: 10.7498/aps.57.3506
    [20] Gao Jian-Xia, Song Guo-Feng, Guo Bao-Shan, Gan Qiao-Qiang, Chen Liang-Hui. Surface plasmon modulated nano-aperture vertical-cavity surface-emitting laser. Acta Physica Sinica, 2007, 56(10): 5827-5830. doi: 10.7498/aps.56.5827
Metrics
  • Abstract views:  5008
  • PDF Downloads:  2540
  • Cited By: 0
Publishing process
  • Received Date:  06 September 2014
  • Accepted Date:  25 October 2014
  • Published Online:  05 April 2015

/

返回文章
返回