Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN

Chen Xin Yan Xiao-Hong Xiao Yang

Citation:

Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN

Chen Xin, Yan Xiao-Hong, Xiao Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • According to first-principles calculation, we study the charge distribution of Li-doped few-layer (1-3 layers) MoS2 and compare it with the results of graphene and BN. It is found that the stable adsorption sites of Li are the top (Mo) site for MoS2 layer, and the hexagonal center for graphene and BN layers. Band structures of pristine MoS2 show that single-layer MoS2 is a direct band gap semiconductor while few-layer MoS2 is an indirect one. As MoS2 is doped, the Fermi level will shift to the conduction band, indicating a charge transfer between Li and MoS2. The charge transfer takes place mostly between Li and the topmost MoS2 layer, which is very similar to that happening between graphene and BN. However, the second and third layer of MoS2, which are far from Li, can acquire about 10% of transferred charges. In contrast, the second and third layer obtain no more than 2% of charges for graphene and BN. Based on the electrostatic theory, we derive for both double and triple layers the formulas of electrostatic energy, which show clearly that only charge transfer between Li and the topmost layer will give the lowest electrostatic energy. Moreover, we calculate the work functions of pristine MoS2, graphene and BN, and find that, despite similar work functions of MoS2 and BN, the larger band gap of BN will make charge transfer between Li and BN harder. The analyses of electrostatic energy and work function show that the charge distribution is dominated by both interlayer electrostatic interaction and work function of material. It is expected that the above results could be helpful for doping layered structures and designing devices.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. NS2014073).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [3]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [4]

    Li K, Yang W, Wei J L, Du S W, Li Y T 2014 Chin. Phys. B 23 047103

    [5]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [6]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335

    [7]

    Xiao D, Liu G, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [8]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887

    [9]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nano 7 490

    [10]

    Zeng H, Liu G, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [11]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280

    [12]

    Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Chin. Phys. B 23 047101

    [13]

    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J N, Wang X R 2013 Nat. Commun. 4 2642

    [14]

    Kim S, Konar A, Hwang W S 2012 Nat. Commun. 3 1011

    [15]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nano 6 147

    [16]

    Lembke D, Kis A 2012 ACS Nano 6 10070

    [17]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [18]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [19]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [20]

    Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991

    [21]

    Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420

    [22]

    Lu D, Xiao Y, Yan X H, Yang Y R 2011 Chem. Phys. Lett. 4 263

    [23]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169

    [24]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354

    [25]

    Chang J, Larentis S, Tutuc E, Register L, Banerjee S 2014 Appl. Phys. Lett. 104 141603

    [26]

    Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201

    [27]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 物理学报 62 187102]

    [28]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 物理学报 62 037103]

    [29]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2013 Acta Phys. Sin. 62 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2013 物理学报 62 117101]

    [30]

    Giovannetti G, Khomyakov P, Brocks G, Karpan V, Brink J, Kelly P 2008 Phys. Rev. Lett. 101 026803

    [31]

    Bokdam M, Brocks G, Katsnelson M, Kelly P 2014 Phys. Rev. B 90 085415

    [32]

    Zhao S, Li Z, Yang J 2014 J. Am. Chem. Soc. 136 13313

    [33]

    Zhao J J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [34]

    Rubio A, Miyamoto Y, Blase X, Cohen M L, Louie S G 1996 Phys. Rev. B 53 4023

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [3]

    Feng Q, Yue Y X, Wang W H, Zhu H Q 2014 Chin. Phys. B 23 043101

    [4]

    Li K, Yang W, Wei J L, Du S W, Li Y T 2014 Chin. Phys. B 23 047103

    [5]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [6]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335

    [7]

    Xiao D, Liu G, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802

    [8]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887

    [9]

    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nano 7 490

    [10]

    Zeng H, Liu G, Dai J, Yan Y, Zhu B, He R, Xie L, Xu S, Chen X, Yao W, Cui X 2013 Sci. Rep. 3 1608

    [11]

    Pan H, Zhang Y W 2012 J. Mater. Chem. 22 7280

    [12]

    Liu Q J, Zhang N C, Liu F S, Liu Z T 2014 Chin. Phys. B 23 047101

    [13]

    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J N, Wang X R 2013 Nat. Commun. 4 2642

    [14]

    Kim S, Konar A, Hwang W S 2012 Nat. Commun. 3 1011

    [15]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nano 6 147

    [16]

    Lembke D, Kis A 2012 ACS Nano 6 10070

    [17]

    Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674

    [18]

    Radisavljevic B, Whitwick M B, Kis A 2011 ACS Nano 5 9934

    [19]

    Fang H, Chuang S, Chang T C, Takei K, Takahashi T, Javey A 2012 Nano Lett. 12 3788

    [20]

    Fang H, Tosun M, Seol G, Chang T C, Takei K, Guo J, Javey A 2013 Nano Lett. 13 1991

    [21]

    Dolui K, Rungger I, Pemmaraju C D, Sanvito S 2013 Phys. Rev. B 88 075420

    [22]

    Lu D, Xiao Y, Yan X H, Yang Y R 2011 Chem. Phys. Lett. 4 263

    [23]

    Kresse G, Furthmuller 1996 Phys. Rev. B 54 11169

    [24]

    Henkelman G, Arnaldsson A, Jonsson H 2006 Comput. Mater. Sci. 36 354

    [25]

    Chang J, Larentis S, Tutuc E, Register L, Banerjee S 2014 Appl. Phys. Lett. 104 141603

    [26]

    Li Z L, Cheng X L 2014 Chin. Phys. B 23 046201

    [27]

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin. 62 187102 (in Chinese) [曹娟, 崔磊, 潘靖 2013 物理学报 62 187102]

    [28]

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103 (in Chinese) [吴木生, 徐波, 刘刚, 欧阳楚英 2013 物理学报 62 037103]

    [29]

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2013 Acta Phys. Sin. 62 117101 (in Chinese) [刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2013 物理学报 62 117101]

    [30]

    Giovannetti G, Khomyakov P, Brocks G, Karpan V, Brink J, Kelly P 2008 Phys. Rev. Lett. 101 026803

    [31]

    Bokdam M, Brocks G, Katsnelson M, Kelly P 2014 Phys. Rev. B 90 085415

    [32]

    Zhao S, Li Z, Yang J 2014 J. Am. Chem. Soc. 136 13313

    [33]

    Zhao J J, Buldum A, Han J, Lu J P 2000 Phys. Rev. Lett. 85 1706

    [34]

    Rubio A, Miyamoto Y, Blase X, Cohen M L, Louie S G 1996 Phys. Rev. B 53 4023

  • [1] Wang Qi-Ming, Zhang Yi-Jun, Wang Xing-Chao, Wang Liang, Jin Mu-Chun, Ren Ling, Liu Xiao-Rong, Qian Yun-Sheng. First-principles study of Cs/O deposited Na2KSb photocathode surface. Acta Physica Sinica, 2024, 73(8): 088501. doi: 10.7498/aps.73.20231561
    [2] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [3] Liu Hong-Liang, Guo Zhi-Ying, Yuan Xiao-Feng, Gao Qian-Qian, Duan Xin-Yu, Zhang Xin, Zhang Jiu-Xing. Electronic structures and emission properties of typical binary single crystal REB6. Acta Physica Sinica, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [4] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [5] Liao Tian-Jun, Lin Bi-Hong, Wang Yu-Hui. Performance characteristics of a novel high-efficientgraphene thermionic power device. Acta Physica Sinica, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [6] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [7] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [8] Yuan Guo-Liang, Li Shuang, Ren Shen-Qiang, Liu Jun-Ming. Excited charge-transfer organics with multiferroicity. Acta Physica Sinica, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [9] Gao Jing, Chang Kai-Nan, Wang Lu-Xia. Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system. Acta Physica Sinica, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [10] Du Yu-Jie, Chang Ben-Kang, Zhang Jun-Ju, Li Biao, Wang Xiao-Hui. First-principles study of the electronic structure and optical properties of GaN(0001) surface. Acta Physica Sinica, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [11] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [12] Zhou Hua-Jie, Xu Qiu-Xia. Ni-FUSI metal gate work function modulation technology. Acta Physica Sinica, 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [13] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [14] Wang Guo-Dong, Zhang Wang, Zhang Wen-Hua, Li Zong-Mu, Xu Fa-Qiang. Synchrotron radiation photoemission studies on Fe/ZnO(0001) interface. Acta Physica Sinica, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [15] Zhou Ke-Jin, Yasuhisa Tezuka, Cui Ming-Qi, Ma Chen-Yan, Zhao Yi-Dong, Wu Zi-Yu, Akira Yagishita. Electronic structure of MnS studied by resonant inelastic soft X-ray scattering. Acta Physica Sinica, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [16] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [17] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. The influence of contact metal in carbon nanotube transistor. Acta Physica Sinica, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [18] Ma Hua-Li, Li Ying-Lan, Yang Bao-Hua, Wang Feng. Structural and optical properties and charge transfer study for C60-PMMA composite films. Acta Physica Sinica, 2005, 54(6): 2859-2862. doi: 10.7498/aps.54.2859
    [19] Cao Zhu-Rong, Cai Xiao-Hong, Yu De-Yang, Yang Wei, Lu Rong-Chun, Shao Cao-Jie, Chen Xi-Meng. Study of the electron transfer in Xeq+-He collisions. Acta Physica Sinica, 2004, 53(9): 2943-2946. doi: 10.7498/aps.53.2943
    [20] WEI JIAN-HUA, XIE SHI-JIE, MEI LIANG-MO. CHARGE TRANSFER IN MIXED HALIDE MX COMPOUNDS. Acta Physica Sinica, 2000, 49(8): 1561-1566. doi: 10.7498/aps.49.1561
Metrics
  • Abstract views:  5229
  • PDF Downloads:  506
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2014
  • Accepted Date:  23 November 2014
  • Published Online:  05 April 2015

/

返回文章
返回