Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field

Wang Chang Cao Jun-Cheng

Citation:

Nonlinear electron transport in superlattice driven by a terahertz field and a tilted magnetic field

Wang Chang, Cao Jun-Cheng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Vertical electron transport in semiconductor superlattice has been the focus of science and technology during the past two decades due to the potential application of superlattice in terahertz devices. When driven by electromagnetic field, many novel phenomena have been found in superlattice. Here we study the chaotic electron transport in miniband superlattice driven by dc+ac electric fields along the growth axis (z-axis) and a magnetic field tilted to z-axis using semiclassical equations of motion in the preflence of dissipation. We calculate the electron momentum by changing the magnetic field or amplitude of the terahertz field. It is shown that the momentum py(t) of miniband electron exhibits complicated oscillation modes while changing the control parameters. Poincaré bifurcation diagram and power spectrum are adopted to analyze the nonlinear electron states. Poincaré bifurcation diagram is obtained by plotting pym = py(mTac) (with m = 1, 2, 3,… and Tac the period of ac terahertz field) as functions of ac amplitude E1 after the transients decay. The periodic and aperiodic regions can be distinguished from each other since there are a large number of points in the chaotic regions. When the magnetic field is increased from 1.5 to 2 T, the Poincaré bifurcation diagram changes dramatically due to the strong effect of magnetic field on electron motion. The oscillating state of py(t) may be changed between periodic and chaotic syates. Power spectra of electron momentum py for different values of E1 (= 2.06, 2.18, 2.388, and 2.72) are calculated for a deep insight into the nonlinear oscillating mode. It is found that the power spectra of n-periodic states show peaks at frequencies ifac/n (with i = 1, 2, 3,…); the power spectra of chaotic states are very irregular with a large number of peaks. We demonstrate that the dissipation and resonance between Bloch oscillation frequency and cyclotron frequency play an important role in the electron transport process. We attribute the emerging of periodic and chaotic states in a superlattice to the interaction between terahertz radiation and internal cooperative oscillating mode related to Bloch oscillation and cyclotron oscillation. In the case of ωB≠iωc, the time-dependent electron motion is chaotic in most regions of the parameter space. Results of the preflent paper are useful for designing terahertz devices based on the semiconductor superlattices.
    • Funds: Project supported by the 973 Program of China (Grant No. 2014CB339803), the 863 Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61204135, 61131006, 61321492), the Major National Development Project of Scientific Instrument and Equipment of China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology (Grant No. 14530711300).
    [1]

    Lei X L, Horing N J M, Cui H L 1991 Phys. Rev. Lett. 66 3277

    [2]

    Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H, K. Köhler 1993 Phys. Rev. Lett. 70 3319

    [3]

    Winnerl S, Schomburg E, Brandl S, Kus O, Renk K F, Wanke M C, Allen S J, Ignatov A A, Ustinov V, Zhukov A, Kop’ev P S 2000 Appl. Phys. Lett. 77 1259

    [4]

    Sun B, Wang J, Ge W, Wang Y, Jiang D, Zhu H, Wang H, Deng Y, Feng S 1999 Phys. Rev. B 60 8866

    [5]

    Wacker A 2002 Phys. Rep. 357 1

    [6]

    Zhang Q Y, Tian Q 2002 Acta Phys. Sin. 51 1804 (in Chinese) [张启义, 田强 2002 物理学报 51 1804]

    [7]

    Hyart T, Mattas J, Alekseev K N 2009 Phys. Rev. Lett. 103 117401

    [8]

    Wang R Z, Yuan R, Song X M, Wei J S, Yan H 2009 Acta Phys. Sin. 58 3437 (in Chinese) [王如志, 袁瑞, 宋雪梅, 魏金生, 严辉 2009 物理学报 58 3437]

    [9]

    Wang C, Cao J C 2012 J. Appl. Phys. 111 053711

    [10]

    Li W, Reidler I, Aviad Y, Huang Y, Song H, Zhang Y, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [11]

    Ignatov A A 2014 J. Appl. Phys. 116 084506

    [12]

    Unterrainer K, Keay B J, Wanke M C, Allen S J, Leonard D, Medeiros-Ribeiro G, Bhattacharya U, Rodwell M J W 1996 Phys. Rev. Lett. 76 2973

    [13]

    Lei X L 1997 J. Appl. Phys. 82 718

    [14]

    Aguado R, Platero G 1998 Phys. Rev. Lett. 81 4971

    [15]

    Bauer T, Kolb J, Hummel A B, Roskos H G, Kosevich Y, Klaus Köhler 2002 Phys. Rev. Lett. 88 086801

    [16]

    Kosevich Y A, Hummel A B, Roskos H G, Köhler K 2006 Phys. Rev. Lett. 96 137403

    [17]

    Bulashenko O M, Bonilla L L 1995 Phys. Rev. B 52 7849

    [18]

    Zhang Y, Kastrup J, Klann R, Ploog K H, Grahn H T 1996 Phys. Rev. Lett. 77 3001

    [19]

    Cao J C, Liu H C, Lei X L 2000 Phys. Rev. B 61 5546

    [20]

    Fromhold T M, Patane à, Bujkiewicz S, Wilkinson P B, Fowler D, Sherwood D, Stapleton S P, Krokhin A A, Eaves L, Henini M, Sankeshwar N S, Sheard F W 2004 Nature 428 726

    [21]

    Wang C, Wang F, Cao J C 2014 Chaos 24 033109

  • [1]

    Lei X L, Horing N J M, Cui H L 1991 Phys. Rev. Lett. 66 3277

    [2]

    Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H, K. Köhler 1993 Phys. Rev. Lett. 70 3319

    [3]

    Winnerl S, Schomburg E, Brandl S, Kus O, Renk K F, Wanke M C, Allen S J, Ignatov A A, Ustinov V, Zhukov A, Kop’ev P S 2000 Appl. Phys. Lett. 77 1259

    [4]

    Sun B, Wang J, Ge W, Wang Y, Jiang D, Zhu H, Wang H, Deng Y, Feng S 1999 Phys. Rev. B 60 8866

    [5]

    Wacker A 2002 Phys. Rep. 357 1

    [6]

    Zhang Q Y, Tian Q 2002 Acta Phys. Sin. 51 1804 (in Chinese) [张启义, 田强 2002 物理学报 51 1804]

    [7]

    Hyart T, Mattas J, Alekseev K N 2009 Phys. Rev. Lett. 103 117401

    [8]

    Wang R Z, Yuan R, Song X M, Wei J S, Yan H 2009 Acta Phys. Sin. 58 3437 (in Chinese) [王如志, 袁瑞, 宋雪梅, 魏金生, 严辉 2009 物理学报 58 3437]

    [9]

    Wang C, Cao J C 2012 J. Appl. Phys. 111 053711

    [10]

    Li W, Reidler I, Aviad Y, Huang Y, Song H, Zhang Y, Rosenbluh M, Kanter I 2013 Phys. Rev. Lett. 111 044102

    [11]

    Ignatov A A 2014 J. Appl. Phys. 116 084506

    [12]

    Unterrainer K, Keay B J, Wanke M C, Allen S J, Leonard D, Medeiros-Ribeiro G, Bhattacharya U, Rodwell M J W 1996 Phys. Rev. Lett. 76 2973

    [13]

    Lei X L 1997 J. Appl. Phys. 82 718

    [14]

    Aguado R, Platero G 1998 Phys. Rev. Lett. 81 4971

    [15]

    Bauer T, Kolb J, Hummel A B, Roskos H G, Kosevich Y, Klaus Köhler 2002 Phys. Rev. Lett. 88 086801

    [16]

    Kosevich Y A, Hummel A B, Roskos H G, Köhler K 2006 Phys. Rev. Lett. 96 137403

    [17]

    Bulashenko O M, Bonilla L L 1995 Phys. Rev. B 52 7849

    [18]

    Zhang Y, Kastrup J, Klann R, Ploog K H, Grahn H T 1996 Phys. Rev. Lett. 77 3001

    [19]

    Cao J C, Liu H C, Lei X L 2000 Phys. Rev. B 61 5546

    [20]

    Fromhold T M, Patane à, Bujkiewicz S, Wilkinson P B, Fowler D, Sherwood D, Stapleton S P, Krokhin A A, Eaves L, Henini M, Sankeshwar N S, Sheard F W 2004 Nature 428 726

    [21]

    Wang C, Wang F, Cao J C 2014 Chaos 24 033109

Metrics
  • Abstract views:  5312
  • PDF Downloads:  685
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2014
  • Accepted Date:  10 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回