Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Low-RCS waveguide slot array antenna based on a metamaterial absorber

Li Wen-Qiang Cao Xiang-Yu Gao Jun Zhao Yi Yang Huan-Huan Liu Tao

Citation:

Low-RCS waveguide slot array antenna based on a metamaterial absorber

Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zhao Yi, Yang Huan-Huan, Liu Tao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A method of reducing the in-band radar cross section (RCS) of waveguide slot array antenna by utilizing a metamaterial absorber (MA) is preflented. A novel ultra-thin (the thickness is only 0.01λ, λ is the wavelength corresponding to the MA resonant frequency) MA with high absorptivity and no surface lossy layer is designed; the absorber is composed of two metallic layers separated by a lossy dielectric spacer. The top layer consists of an etched oblique cross-gap patch set in a periodic pattern and the bottom one is a solid metal. Effective impedance of MMA will match the free space impedance by adjusting the dimensions of electric resonant component and magnetic resonant component in the unit cell, and so the reflection will be minimized. Meanwhile, the MMA can obtain a resonant loss to fulfill the high absorption. By finely adjusting the geometric parameters of the structure, we obtain the MA with absorption 99.9%, and its absorbing mechanism being interprefled by analyzing surface current, surface electric field, and volume power loss density distribution, respectively. The metallic area between slots in E plane direction of waveguide slot array antenna is covered by MA, and a distance between the radiating slot and the MA is suitably arranged. Antenna radiation performance is kept in good order because this arrangement does not destroy the amplitude distribution of antenna aperture, and the high absorptivity of MA that contributes the reduction of structure mode scattering. Simulation and experimental results demonstrate that the array antenna loaded with MA gets more than 6 dB RCS reduction both in the x-and y-polarized incident conditions; and the RCS of antenna has obviously a reduction from -25° to +25°, the most reduction value exceeds 10 dB in the boresight direction, while the reflectance, gain and beam width are guaranteed. This idea has an important significance and engineering application for the RCS reduction of array antenna.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 60671001, 61271100, 61471389), the Key Program of Natural Science Basic Research of Shaanxi Province, China (Grant No. 2010JZ010), the China Postdoctoral Science Foundation(Grant No. 2012T50878), the Natural Science Basic Research of Shanxi Province, China (Grant Nos. SJ08-ZT06, 2012JM8003), and the Doctoral Innovation Foundation of Information and Navigation college of AFEU, China (Grant No. KGD103201402).
    [1]

    Sang J H 2013 Low-observable Technologies of Aircraft (First Edition) (Beijing: Aviation Industry Press) p1 (in Chinese) [桑建华2013飞行器隐身技术(第1版) (北京: 航空工业出版社)第1页]

    [2]

    Jiang W, Liu Y, Gong S X, Hong T 2009 IEEE Anten. and Wirefless Propag. Lett. 8 1275

    [3]

    Zhou H, Qu S B, Lin B Q, Wang J F, Ma H, Xu Z, Peng W D, Bai P 2012 IEEE Trans. Antennas Propag. 60 3040

    [4]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electronics Letters 49 1312

    [5]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163

    [6]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. and Wirefless Propag. Lett. 7 473

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tuong P V, Lam V D, Park J W, Choi E H, Nikitov S A, Lee Y P 2013 Photonics and Nanostructures-Fundamentals and Applications 11 89

    [9]

    Ghosh S, Bhattzcharyya S, Kaiprath Y, Srivastava K V 2014 Journal of Applied Physics 115 681063

    [10]

    Zhai H Q, Li Z H, Li L, Liang C H 2013 Microw. Opt. Technol. Lett. 55 1606

    [11]

    Huang X J, Yang H L, Yu S Q, Wang J X, L M H 2013 Journal of Applied Physics 113 213516

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    You J B, Lee W J, Won D, Yu K 2014 Optics Express 22 8339

    [14]

    Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P, Lam V D 2014 Optics Communications 322 209

    [15]

    Li W C, Qiao X J, Luo Y, Qin F X, Peng H X 2014 Applied Physics A 115 229

    [16]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. on Anten. and Propag. 61 2327

    [17]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [18]

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103]

    [19]

    Hu S M, Chen H H, Law C L, Shen Z X, Zhu L, Zhang W X, Dou W B 2007 IEEE Anten. and Wirefless Propag. Lett. 6 70

    [20]

    Yang S T, Ling H 2013 IEEE Anten. and Wirefless Propag. Lett. 12 35

    [21]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [22]

    Szabo Z, Park G H, Hedge R 2010 IEEE Transaction on Microwave Theory and Techniques 58 2646

    [23]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [24]

    He X J, Wang Y, Wang J M, Gui T L 2011 Progress In Electromag. Research 115 381

    [25]

    Zhu W R, Zhao X P, Bao S, Zhang Y P 2010 Chin. Phys. Lett. 27 014204

    [26]

    Shen X P, Cui T J, Ye J X 2012 ActaPhys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

  • [1]

    Sang J H 2013 Low-observable Technologies of Aircraft (First Edition) (Beijing: Aviation Industry Press) p1 (in Chinese) [桑建华2013飞行器隐身技术(第1版) (北京: 航空工业出版社)第1页]

    [2]

    Jiang W, Liu Y, Gong S X, Hong T 2009 IEEE Anten. and Wirefless Propag. Lett. 8 1275

    [3]

    Zhou H, Qu S B, Lin B Q, Wang J F, Ma H, Xu Z, Peng W D, Bai P 2012 IEEE Trans. Antennas Propag. 60 3040

    [4]

    Zhao Y, Cao X Y, Gao J, Li W Q 2013 Electronics Letters 49 1312

    [5]

    Genovesi S, Costa F, Monorchio A 2014 IEEE Trans. Antennas Propag. 62 163

    [6]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. and Wirefless Propag. Lett. 7 473

    [7]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [8]

    Tuong P V, Lam V D, Park J W, Choi E H, Nikitov S A, Lee Y P 2013 Photonics and Nanostructures-Fundamentals and Applications 11 89

    [9]

    Ghosh S, Bhattzcharyya S, Kaiprath Y, Srivastava K V 2014 Journal of Applied Physics 115 681063

    [10]

    Zhai H Q, Li Z H, Li L, Liang C H 2013 Microw. Opt. Technol. Lett. 55 1606

    [11]

    Huang X J, Yang H L, Yu S Q, Wang J X, L M H 2013 Journal of Applied Physics 113 213516

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    You J B, Lee W J, Won D, Yu K 2014 Optics Express 22 8339

    [14]

    Viet D T, Hien N T, Tuong P V, Minh N Q, Trang P T, Le L N, Lee Y P, Lam V D 2014 Optics Communications 322 209

    [15]

    Li W C, Qiao X J, Luo Y, Qin F X, Peng H X 2014 Applied Physics A 115 229

    [16]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. on Anten. and Propag. 61 2327

    [17]

    Bao S, Luo C R, Zhao X P 2011 Acta Phys. Sin. 60 014101 (in Chinese) [保石, 罗春荣, 赵晓鹏 2011 物理学报 60 014101]

    [18]

    Yang H H, Cao X Y, Gao J, Liu T, Ma J J, Yao X, Li W Q 2013 Acta Phys. Sin. 62 064103 (in Chinese) [杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强 2013 物理学报 62 064103]

    [19]

    Hu S M, Chen H H, Law C L, Shen Z X, Zhu L, Zhang W X, Dou W B 2007 IEEE Anten. and Wirefless Propag. Lett. 6 70

    [20]

    Yang S T, Ling H 2013 IEEE Anten. and Wirefless Propag. Lett. 12 35

    [21]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [22]

    Szabo Z, Park G H, Hedge R 2010 IEEE Transaction on Microwave Theory and Techniques 58 2646

    [23]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [24]

    He X J, Wang Y, Wang J M, Gui T L 2011 Progress In Electromag. Research 115 381

    [25]

    Zhu W R, Zhao X P, Bao S, Zhang Y P 2010 Chin. Phys. Lett. 27 014204

    [26]

    Shen X P, Cui T J, Ye J X 2012 ActaPhys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

  • [1] Chen Wei, Huang Hai, Yang Li-Xia, Bo Yong, Huang Zhi-Xiang. Scattering characteristics of non-uniform dusty plasma targets based on Fokker-Planck-Landau collision model. Acta Physica Sinica, 2023, 72(6): 060201. doi: 10.7498/aps.72.20222113
    [2] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [3] Cong Li-Li, Fu Qiang, Cao Xiang-Yu, Gao Jun, Song Tao, Li Wen-Qiang, Zhao Yi, Zheng Yue-Jun. A novel circularly polarized patch antenna with low radar cross section and high-gain. Acta Physica Sinica, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [4] Li Wen-Qiang, Cao Xiang-Yu, Gao Jun, Zheng Yue-Jun, Yang Huan-Huan, Li Si-Jia, Zhao Yi. Design of shared aperture metamaterial and its applications for high gain and low radar cross section antenna. Acta Physica Sinica, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [5] Yan Xin, Liang Lan-Ju, Zhang Ya-Ting, Ding Xin, Yao Jian-Quan. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies. Acta Physica Sinica, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [6] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [7] Li Wen-Qiang, Gao Jun, Cao Xiang-Yu, Yang Qun, Zhao Yi, Zhang Zhao, Zhang Cheng-Hui. A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics. Acta Physica Sinica, 2014, 63(12): 124101. doi: 10.7498/aps.63.124101
    [8] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [9] Wang Ying, Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou. Design and experiments of low-frequency broadband metamaterial absorber based on lumped elements. Acta Physica Sinica, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [10] Yang Li-Xia, Shen Dan-Hua, Shi Wei-Dong. Analyses of electromagnetic scattering characteristics for 3D time-varying plasma medium. Acta Physica Sinica, 2013, 62(10): 104101. doi: 10.7498/aps.62.104101
    [11] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Zhao Yi, Yang Qun. Design of ultrathin broadband perfect metamaterial absorber with low radar cross section. Acta Physica Sinica, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [12] Li Si-Jia, Cao Xiang-Yu, Gao Jun, Liu Tao, Yang Huan-Huan, Li Wen-Qiang. Design of ultra-thin broadband metamaterial absorber and its application for RCS reduction of circular polarization tilted beam antenna. Acta Physica Sinica, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [13] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Li Si-Jia, Zhao Yi, Yuan Zi-Dong, Zhang Hao. Broadband low-RCS metamaterial absorber based on electromagnetic resonance separation. Acta Physica Sinica, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] Yang Huan-Huan, Cao Xiang-Yu, Gao Jun, Liu Tao, Ma Jia-Jun, Yao Xu, Li Wen-Qiang. Design of low-radar cross section microstrip antenna based on metamaterial absorber. Acta Physica Sinica, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [15] Liu Tao, Cao Xiang-Yu, Gao Jun, Zheng Qiu-Rong, Li Wen-Qiang. Design of metamaterial absorber and its applications for waveguide slot antenna. Acta Physica Sinica, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [16] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Lin Bao-Qin, Zhou Hang, Bai Peng, Gu Wei, Peng Wei-Dong, Ma Hua. Design of a wide-band metamaterial absorber based on resistance films. Acta Physica Sinica, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [17] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Bai Peng, Peng Wei-Dong, Lin Bao-Qin. Design of a wide-band metamaterial absorber based on loaded magnetic resonators. Acta Physica Sinica, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [18] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Ma Hua, Lin Bao-Qin, Bai Peng, Peng Wei-Dong. A polarization-insensitive and double-face-absorption chiral metamaterial absorber. Acta Physica Sinica, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [19] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] Liu Shao-Bin, Zhang Guang-Fu, Yuan Nai-Chang. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas. Acta Physica Sinica, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
Metrics
  • Abstract views:  6478
  • PDF Downloads:  702
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2014
  • Accepted Date:  04 November 2014
  • Published Online:  05 May 2015

/

返回文章
返回