Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Universal conductance fluctuations of topological insulators

Li Zhao-Guo Zhang Shuai Song Feng-Qi

Citation:

Universal conductance fluctuations of topological insulators

Li Zhao-Guo, Zhang Shuai, Song Feng-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • As an exotic quantum condensed matter, the topological insulator (TI) is a bulk-insulating material with a Diractype conducting surface state. Such a dissipationless transport of topological surface state (TSS) is protected by the timereversal symmetry, which leads to the potential applications in spintronics and quantum computations. Understanding the topological symplectic transport of the Dirac fermions is a key issue to the study and design of the TI-based devices. There are many transport properties about Dirac fermions. And universal conductance fluctuation (UCF) is one of the most important transport manifestations of mesoscopic electronic interference. So the UCF effect in TI is a very meaningful research field It can provide an intriguing and special perspective to reveal the quantum transport of TSSs In this review, we introduce the research progress on the UCF of TSSs in a pedagogical way We review the achievements and the existing problems in order to inspire future research work.#br#We start this review with the basic UCF theory and the experimental observation. The UCF has been observed in TI earlier, but weather it originates from TSS has not been further studied. Then a series of work is carried out to prove the topological nature of UCF in TI Firstly, the UCF phenomenon in TIs is demonstrated to be from two-dimensional (2D) interference by magnetoconductance measurements. But the residual bulk state and the 2D electron gas (2DEG) on the surface can also bring about the 2D UCF The field-tilting regulation helps us exclude the distribution from the bulk And the classic self-averaging of UCF is investigated then to obtain the intrinsic UCF amplitude. By comparing with the theoretical prediction, the possibility has been ruled out that the 2D UCF may originate from the 2DEG So its topological nature is demonstrated. Secondly, we discuss the UCF effect in TI by a macroscopic perspective, i.e. the statistical symmetry of UCF, which should be more concise and reflect its universality. For a single TSS, the applied magnetic field will drive the system from a Gaussian symplectic ensemble into a Gaussian unitary ensemble. It results in a √2 fold increase of the UCF amplitude. However, the experiment reveals that the UCF amplitude is reduced by 1/√2. This is contradictory to the theoretical prediction. Actually, there are two TSSs and they are coherently coupled to each other in TIs since the sample’s thickness is smaller than its bulk dephasing length. This leads to a Gaussian orthogonal ensemble of the intersurface coupling system without an external field. In such a case, the UCF amplitude will be reduced by 1/√2 with field increasing. It is consistent with the experimental result. Finally, the other progress on UCFs is discussed, and the general outlook is also mentioned briefly.
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant Nos. 2013CB922103, 2011CB922103, 2014CB921103), the National Natural Science Foundation of China (Grant Nos. 91421109, 11023002, 11134005, 61176088), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130054).
    [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [3]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001

    [4]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [5]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178

    [6]

    Ren Z, Taskin A A, Sasaki S, Segawa K, Ando Y 2010 Phys. Rev. B 82 241306

    [7]

    Ren Z, Taskin A A, Sasaki S, Segawa K, Ando Y 2011 Phys. Rev. B 84 165311

    [8]

    Bardarson J H, Moore J E 2013 Rep. Prog. Phys. 76 056501

    [9]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [10]

    Chen T, Chen Q, Schouteden K, Huang W, Wang X, Li Z, Miao F, Wang X, Li Z, Zhao B, Li S, Song F, Wang J, Wang B, Haesendonck C V, Wang G 2014 Nat. Commun. 5 5022

    [11]

    Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956

    [12]

    Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X, Cui Y 2010 Nat. Mater. 9 225

    [13]

    Li Z G, Qin Y Y, Song F Q, Wang Q H, Wang X F, Wang B G, Ding H F, Haesondonck C V, Wan J G, Zhang Y H, Wang G H 2012 Appl. Phys. Lett. 100 083107

    [14]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602

    [15]

    Li Z G, Garate I, Pan J, Wan X G, Chen T S, Ning W, Zhang X O, Song F Q, Meng Y Z, Hong X C, Wang X F, Pi L, Wang X R, Wang B G, Li S Y, Reed M A, Glazman L, Wang G H 2015 Phys. Rev. B 91 041401

    [16]

    Akkermans E, Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (New York: Cambridge University Press)

    [17]

    Li Z G 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [李兆国2014 博士论文(南京: 南京 大学)]

    [18]

    Umbach C P, Washburn S, Laibowitz R B, Webb R A 1984 Phys. Rev. B 30 4048

    [19]

    Lee P A, Stone A D 1985 Phys. Rev. Lett. 55 1622

    [20]

    Webb R A, Washburn S, Umbach C P, Laibowitz R B 1985 Phys. Rev. Lett. 54 2696

    [21]

    Lee P A, Stone A D, Fukuyama H 1987 Phys. Rev. B 35 1039

    [22]

    Yang P Y, Wang L Y, Hsu Y W, Lin J J 2012 Phys. Rev. B 85 085423

    [23]

    Beenakker C W J, Houten H V 1988 Phys. Rev. B 37 6544

    [24]

    Licini J C, Bishop D J, Kastner M A, Melngailis J 1985 Phys. Rev. Lett. 55 2987

    [25]

    Webb R A, Washburn S, Umbach C P 1988 Phys. Rev. B 37 8455

    [26]

    Lien A S, Wang L Y, Chu C S, Lin J J 2011 Phys. Rev. B 84 155432

    [27]

    Altshuler B L 1985 JETP Lett. 41 648

    [28]

    Altshuler B L, Shklovskii B I 1986 Sov. Phys. JETP 64 127

    [29]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [30]

    Matsuo S, Koyama T, Shimamura K, Arakawa T, Nishihara Y, Chiba D, Kobayashi K, Ono T, Chang C Z, He K, Ma X C, Xue Q K 2012 Phys. Rev. B 85 075440

    [31]

    Li Z G, Qin Y Y, Y. Mu W, Chen T S, Xu C H, He L B, Wan J G, Song F Q, Zhou J F, Han M, Wang G H 2011 J. Nanosci. Nanotechnol. 11 7042

    [32]

    Li Z G, Chen T S, Pan H Y, Song F Q, Wang B G, Han J H, Qin Y Y, Wang X F, Zhang R, Wan J G, Xing D Y, Wang G H 2012 Sci. Rep. 2 595

    [33]

    Kandala A, Richardella A, Zhang D, Flanagan T C, Samarth N 2013 Nano Lett. 13 2471

    [34]

    Lee J, Park J, Lee J H, Kim J S, Lee H J 2012 Phys. Rev. B 86 245321

    [35]

    Gehring P, Benia H M, Weng Y, Dinnebier R, Ast C R, Burghard M, Kern K 2013 Nano Lett. 13 1179

    [36]

    Tang C S, Xia B, Zou X, Chen S, Ou H W, Wang L, Rusydi A, Zhu J X, Chia E E M 2013 Sci. Rep. 3 3513

    [37]

    Xiong J, Khoo Y, Jia S, Cava R J, Ong N P 2013 Phys. Rev. B 88 035128

    [38]

    Baxter D V, Richter R, Trudeau M L, Cochrane R W, Strom-Olsen J O 1989 J. Phys. France 50 1673

    [39]

    Li Z G, Meng Y Z, Pan J, Chen T S, Hong X C, Li S Y, Wang X F, Song F Q, Wang B G 2014 Appl. Phys. Express 7 065202

    [40]

    Bianchi M, Guan D, Bao S, Mi J, Iversen B B, King P D C, Hofmann P 2010 Nat. Commun. 1 128

    [41]

    Bahramy M S, King P D C, de la Torre A, Chang J, Shi M, Patthey L, Balakrishnan G, Hofmann P, Arita R, Nagaosa N, Baumberger F 2012 Nat. Commun. 3 1159

    [42]

    King P D C, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D L, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802

    [43]

    Benia H M, Lin C, Kern K, Ast C R 2011 Phys. Rev. Lett. 107 177602

    [44]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [45]

    Cao H, Liu C, Tian J, Xu Y, Miotkowski I, Hasan M Z, Chen Y P 2014 arXiv 1409 3217

    [46]

    Adroguer P, Carpentier D, Cayssol J, Orignac E 2012 New J. Phys. 14 103027

    [47]

    Zhang L, Zhuang J, Xing Y, Li J, Wang J, Guo H 2014 Phys. Rev. B 89 245107

    [48]

    Pal A N, Kochat V, Ghosh A 2012 Phys. Rev. Lett. 109 196601

    [49]

    Rossi E, Bardarson J H, Fuhrer M S, Sarma S D 2012 Phys. Rev. Lett. 109 096801

    [50]

    Imry Y 1986 Europhys. Lett. 1 249

    [51]

    Buttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [52]

    Muttalib K A, Pichard J L, Stone A D 1987 Phys. Rev. Lett. 59 2475

    [53]

    Mello P A, Akkermans E, Shapiro B 1988 Phys. Rev. Lett. 61 459

    [54]

    Zanon N, Pichard J L 1988 J. Phys. France 49 907

    [55]

    Stone A D 1989 Phys. Rev. B 39 10736

    [56]

    Mello P A 1988 Phys. Rev. Lett. 60 1089

    [57]

    Meir Y, Entin-Wohlman O 1993 Phys. Rev. Lett. 70 1988

    [58]

    Beenakker C W J 1993 Phys. Rev. Lett. 70 1155

    [59]

    Lyanda-Geller Y B, Mirlin A D 1994 Phys. Rev. Lett. 72 1894

    [60]

    Dyson F J 1962 J. Math. Phys. 3 140

    [61]

    Debray P, Pichard J L, Vicente J, Tung P N 1989 Phys. Rev. Lett. 63 2264

    [62]

    Mailly D, Sanquer M, Pichard J L, Pari P 1989 Europhys. Lett. 8 471

    [63]

    Moon J S, Birge N O, Golding B 1996 Phys. Rev. B 53 R4193

    [64]

    Moon J S, Birge N O, Golding B 1997 Phys. Rev. B 56 15124

    [65]

    Hoadley D, McConville P, Birge N O 1999 Phys. Rev. B 60 5617

    [66]

    Millo O, Klepper S J, Keller M W, Prober D E, Xiong S, Stone A D, Sacks R N 1990 Phys. Rev. Lett. 65 1494

    [67]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [68]

    Bohra G, Somphonsane R, Aoki N, Ochiai Y, Akis R, Ferry D K, Bird J P 2012 Phys. Rev. B 86 161405

    [69]

    Rahman A, Guikema J W, Markovic N 2014 Phys. Rev. B 89 235407

    [70]

    Garate I, Glazman L 2012 Phys. Rev. B 86 035422

    [71]

    Fatemi V, Hunt B, Steinberg H, Eltinge S L, Mahmood F, Butch N P, Watanabe K, Taniguchi T, Gedik N, Ashoori R C, Jarillo-Herrero P 2014 Phys. Rev. Lett. 113 206801

    [72]

    Takagaki Y 2012 Phys. Rev. B 85 155308

    [73]

    Cheianov V, Glazman L I 2013 Phys. Rev. Lett. 110 206803

    [74]

    Xia B, Ren P, Sulaev A, Liu P, Shen S Q, Wang L 2013 Phys. Rev. B 87 085442

    [75]

    Alegria L D, Schroer M D, Chatterjee A, Poirier G R, Pretko M, Patel S K, Petta J R 2012 Nano Lett. 12 4711

    [76]

    Checkelsky J G, Hor Y S, Cava R J, Ong N P 2011 Phys. Rev. Lett. 106 196801

    [77]

    Matsuo S, Chida K, Chiba D, Ono T, Slevin K, Kobayashi K, Ohtsuki T, Chang C Z, He K, Ma X C, Xue Q K 2013 Phys. Rev. B 88 155438

  • [1]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [2]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [3]

    Ando Y 2013 J. Phys. Soc. Jpn. 82 102001

    [4]

    Zhang H, Liu C X, Qi X L, Dai X, Fang Z, Zhang S C 2009 Nat. Phys. 5 438

    [5]

    Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z, Shen Z X 2009 Science 325 178

    [6]

    Ren Z, Taskin A A, Sasaki S, Segawa K, Ando Y 2010 Phys. Rev. B 82 241306

    [7]

    Ren Z, Taskin A A, Sasaki S, Segawa K, Ando Y 2011 Phys. Rev. B 84 165311

    [8]

    Bardarson J H, Moore J E 2013 Rep. Prog. Phys. 76 056501

    [9]

    Qu D X, Hor Y S, Xiong J, Cava R J, Ong N P 2010 Science 329 821

    [10]

    Chen T, Chen Q, Schouteden K, Huang W, Wang X, Li Z, Miao F, Wang X, Li Z, Zhao B, Li S, Song F, Wang J, Wang B, Haesendonck C V, Wang G 2014 Nat. Commun. 5 5022

    [11]

    Xu Y, Miotkowski I, Liu C, Tian J, Nam H, Alidoust N, Hu J, Shih C K, Hasan M Z, Chen Y P 2014 Nat. Phys. 10 956

    [12]

    Peng H, Lai K, Kong D, Meister S, Chen Y, Qi X L, Zhang S C, Shen Z X, Cui Y 2010 Nat. Mater. 9 225

    [13]

    Li Z G, Qin Y Y, Song F Q, Wang Q H, Wang X F, Wang B G, Ding H F, Haesondonck C V, Wan J G, Zhang Y H, Wang G H 2012 Appl. Phys. Lett. 100 083107

    [14]

    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q, Lu L 2010 Phys. Rev. Lett. 105 176602

    [15]

    Li Z G, Garate I, Pan J, Wan X G, Chen T S, Ning W, Zhang X O, Song F Q, Meng Y Z, Hong X C, Wang X F, Pi L, Wang X R, Wang B G, Li S Y, Reed M A, Glazman L, Wang G H 2015 Phys. Rev. B 91 041401

    [16]

    Akkermans E, Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (New York: Cambridge University Press)

    [17]

    Li Z G 2014 Ph. D. Dissertation (Nanjing: Nanjing University) (in Chinese) [李兆国2014 博士论文(南京: 南京 大学)]

    [18]

    Umbach C P, Washburn S, Laibowitz R B, Webb R A 1984 Phys. Rev. B 30 4048

    [19]

    Lee P A, Stone A D 1985 Phys. Rev. Lett. 55 1622

    [20]

    Webb R A, Washburn S, Umbach C P, Laibowitz R B 1985 Phys. Rev. Lett. 54 2696

    [21]

    Lee P A, Stone A D, Fukuyama H 1987 Phys. Rev. B 35 1039

    [22]

    Yang P Y, Wang L Y, Hsu Y W, Lin J J 2012 Phys. Rev. B 85 085423

    [23]

    Beenakker C W J, Houten H V 1988 Phys. Rev. B 37 6544

    [24]

    Licini J C, Bishop D J, Kastner M A, Melngailis J 1985 Phys. Rev. Lett. 55 2987

    [25]

    Webb R A, Washburn S, Umbach C P 1988 Phys. Rev. B 37 8455

    [26]

    Lien A S, Wang L Y, Chu C S, Lin J J 2011 Phys. Rev. B 84 155432

    [27]

    Altshuler B L 1985 JETP Lett. 41 648

    [28]

    Altshuler B L, Shklovskii B I 1986 Sov. Phys. JETP 64 127

    [29]

    Checkelsky J G, Hor Y S, Liu M H, Qu D X, Cava R J, Ong N P 2009 Phys. Rev. Lett. 103 246601

    [30]

    Matsuo S, Koyama T, Shimamura K, Arakawa T, Nishihara Y, Chiba D, Kobayashi K, Ono T, Chang C Z, He K, Ma X C, Xue Q K 2012 Phys. Rev. B 85 075440

    [31]

    Li Z G, Qin Y Y, Y. Mu W, Chen T S, Xu C H, He L B, Wan J G, Song F Q, Zhou J F, Han M, Wang G H 2011 J. Nanosci. Nanotechnol. 11 7042

    [32]

    Li Z G, Chen T S, Pan H Y, Song F Q, Wang B G, Han J H, Qin Y Y, Wang X F, Zhang R, Wan J G, Xing D Y, Wang G H 2012 Sci. Rep. 2 595

    [33]

    Kandala A, Richardella A, Zhang D, Flanagan T C, Samarth N 2013 Nano Lett. 13 2471

    [34]

    Lee J, Park J, Lee J H, Kim J S, Lee H J 2012 Phys. Rev. B 86 245321

    [35]

    Gehring P, Benia H M, Weng Y, Dinnebier R, Ast C R, Burghard M, Kern K 2013 Nano Lett. 13 1179

    [36]

    Tang C S, Xia B, Zou X, Chen S, Ou H W, Wang L, Rusydi A, Zhu J X, Chia E E M 2013 Sci. Rep. 3 3513

    [37]

    Xiong J, Khoo Y, Jia S, Cava R J, Ong N P 2013 Phys. Rev. B 88 035128

    [38]

    Baxter D V, Richter R, Trudeau M L, Cochrane R W, Strom-Olsen J O 1989 J. Phys. France 50 1673

    [39]

    Li Z G, Meng Y Z, Pan J, Chen T S, Hong X C, Li S Y, Wang X F, Song F Q, Wang B G 2014 Appl. Phys. Express 7 065202

    [40]

    Bianchi M, Guan D, Bao S, Mi J, Iversen B B, King P D C, Hofmann P 2010 Nat. Commun. 1 128

    [41]

    Bahramy M S, King P D C, de la Torre A, Chang J, Shi M, Patthey L, Balakrishnan G, Hofmann P, Arita R, Nagaosa N, Baumberger F 2012 Nat. Commun. 3 1159

    [42]

    King P D C, Hatch R C, Bianchi M, Ovsyannikov R, Lupulescu C, Landolt G, Slomski B, Dil J H, Guan D, Mi J L, Rienks E D L, Fink J, Lindblad A, Svensson S, Bao S, Balakrishnan G, Iversen B B, Osterwalder J, Eberhardt W, Baumberger F, Hofmann P 2011 Phys. Rev. Lett. 107 096802

    [43]

    Benia H M, Lin C, Kern K, Ast C R 2011 Phys. Rev. Lett. 107 177602

    [44]

    Tian M, Ning W, Qu Z, Du H, Wang J, Zhang Y 2013 Sci. Rep. 3 1212

    [45]

    Cao H, Liu C, Tian J, Xu Y, Miotkowski I, Hasan M Z, Chen Y P 2014 arXiv 1409 3217

    [46]

    Adroguer P, Carpentier D, Cayssol J, Orignac E 2012 New J. Phys. 14 103027

    [47]

    Zhang L, Zhuang J, Xing Y, Li J, Wang J, Guo H 2014 Phys. Rev. B 89 245107

    [48]

    Pal A N, Kochat V, Ghosh A 2012 Phys. Rev. Lett. 109 196601

    [49]

    Rossi E, Bardarson J H, Fuhrer M S, Sarma S D 2012 Phys. Rev. Lett. 109 096801

    [50]

    Imry Y 1986 Europhys. Lett. 1 249

    [51]

    Buttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [52]

    Muttalib K A, Pichard J L, Stone A D 1987 Phys. Rev. Lett. 59 2475

    [53]

    Mello P A, Akkermans E, Shapiro B 1988 Phys. Rev. Lett. 61 459

    [54]

    Zanon N, Pichard J L 1988 J. Phys. France 49 907

    [55]

    Stone A D 1989 Phys. Rev. B 39 10736

    [56]

    Mello P A 1988 Phys. Rev. Lett. 60 1089

    [57]

    Meir Y, Entin-Wohlman O 1993 Phys. Rev. Lett. 70 1988

    [58]

    Beenakker C W J 1993 Phys. Rev. Lett. 70 1155

    [59]

    Lyanda-Geller Y B, Mirlin A D 1994 Phys. Rev. Lett. 72 1894

    [60]

    Dyson F J 1962 J. Math. Phys. 3 140

    [61]

    Debray P, Pichard J L, Vicente J, Tung P N 1989 Phys. Rev. Lett. 63 2264

    [62]

    Mailly D, Sanquer M, Pichard J L, Pari P 1989 Europhys. Lett. 8 471

    [63]

    Moon J S, Birge N O, Golding B 1996 Phys. Rev. B 53 R4193

    [64]

    Moon J S, Birge N O, Golding B 1997 Phys. Rev. B 56 15124

    [65]

    Hoadley D, McConville P, Birge N O 1999 Phys. Rev. B 60 5617

    [66]

    Millo O, Klepper S J, Keller M W, Prober D E, Xiong S, Stone A D, Sacks R N 1990 Phys. Rev. Lett. 65 1494

    [67]

    Koga T, Nitta J, Akazaki T, Takayanagi H 2002 Phys. Rev. Lett. 89 046801

    [68]

    Bohra G, Somphonsane R, Aoki N, Ochiai Y, Akis R, Ferry D K, Bird J P 2012 Phys. Rev. B 86 161405

    [69]

    Rahman A, Guikema J W, Markovic N 2014 Phys. Rev. B 89 235407

    [70]

    Garate I, Glazman L 2012 Phys. Rev. B 86 035422

    [71]

    Fatemi V, Hunt B, Steinberg H, Eltinge S L, Mahmood F, Butch N P, Watanabe K, Taniguchi T, Gedik N, Ashoori R C, Jarillo-Herrero P 2014 Phys. Rev. Lett. 113 206801

    [72]

    Takagaki Y 2012 Phys. Rev. B 85 155308

    [73]

    Cheianov V, Glazman L I 2013 Phys. Rev. Lett. 110 206803

    [74]

    Xia B, Ren P, Sulaev A, Liu P, Shen S Q, Wang L 2013 Phys. Rev. B 87 085442

    [75]

    Alegria L D, Schroer M D, Chatterjee A, Poirier G R, Pretko M, Patel S K, Petta J R 2012 Nano Lett. 12 4711

    [76]

    Checkelsky J G, Hor Y S, Cava R J, Ong N P 2011 Phys. Rev. Lett. 106 196801

    [77]

    Matsuo S, Chida K, Chiba D, Ono T, Slevin K, Kobayashi K, Ohtsuki T, Chang C Z, He K, Ma X C, Xue Q K 2013 Phys. Rev. B 88 155438

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Liu Tian, Li Zong-Liang, Zhang Yan-Hui, Lan Kang. Study of quantum speed limit of of transport process of single quantum dot system in dissipative environment. Acta Physica Sinica, 2023, 72(4): 047301. doi: 10.7498/aps.72.20222159
    [3] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [4] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [5] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [6] Hu Hai-Tao, Guo Ai-Min. Quantum transport properties of bilayer borophene nanoribbons. Acta Physica Sinica, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [7] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [8] Jia Liang-Guang, Liu Meng, Chen Yao-Yao, Zhang Yu, Wang Ye-Liang. Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T'-WTe2. Acta Physica Sinica, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [9] Xu Jia-Ling, Jia Li-Yun, Liu Chao, Wu Quan, Zhao Ling-Jun, Ma Li, Hou Deng-Lu. Band structure of topological insulator Li(Na)AuS. Acta Physica Sinica, 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [10] Wang Hang-Tian, Zhao Hai-Hui, Wen Liang-Gong, Wu Xiao-Jun, Nie Tian-Xiao, Zhao Wei-Sheng. High-performance THz emission: From topological insulator to topological spintronics. Acta Physica Sinica, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [11] Xiang Tian, Cheng Liang, Qi Jing-Bo. Ultrafast charge and spin dynamics on topological insulators. Acta Physica Sinica, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [12] Jia Ding, Ge Yong, Yuan Shou-Qi, Sun Hong-Xiang. Dual-band acoustic topological insulator based on honeycomb lattice sonic crystal. Acta Physica Sinica, 2019, 68(22): 224301. doi: 10.7498/aps.68.20190951
    [13] Liu Chang, Liu Xiang-Rui. Angle resolved photoemission spectroscopy studies on three dimensional strong topological insulators and magnetic topological insulators. Acta Physica Sinica, 2019, 68(22): 227901. doi: 10.7498/aps.68.20191450
    [14] Yan Jie, Wei Miao-Miao, Xing Yan-Xia. Dephasing effect of quantum spin topological states in HgTe/CdTe quantum well. Acta Physica Sinica, 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [15] Gao Yi-Xuan,  Zhang Li-Zhi,  Zhang Yu-Yang,  Du Shi-Xuan. Research progress of two-dimensional organic topological insulators. Acta Physica Sinica, 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [16] Jing Yu-Mei, Huang Shao-Yun, Wu Jin-Xiong, Peng Hai-Lin, Xu Hong-Qi. Magnetotransport in antidot arrays of three-dimensional topological insulators. Acta Physica Sinica, 2018, 67(4): 047301. doi: 10.7498/aps.67.20172346
    [17] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [18] Chen Yan-Li, Peng Xiang-Yang, Yang Hong, Chang Sheng-Li, Zhang Kai-Wang, Zhong Jian-Xin. Stacking effects in topological insulator Bi2Se3:a first-principles study. Acta Physica Sinica, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [19] Li Ping-Yuan, Chen Yong-Liang, Zhou Da-Jin, Chen Peng, Zhang Yong, Deng Shui-Quan, Cui Ya-Jing, Zhao Yong. Research of thermal expansion coefficient of topological insulator Bi2Te3. Acta Physica Sinica, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [20] Zeng Lun-Wu, Zhang Hao, Tang Zhong-Liang, Song Run-Xia. Electromagnetic wave scattering by a topological insulator prolate spheroid particle. Acta Physica Sinica, 2012, 61(17): 177303. doi: 10.7498/aps.61.177303
Metrics
  • Abstract views:  8787
  • PDF Downloads:  737
  • Cited By: 0
Publishing process
  • Received Date:  16 March 2015
  • Accepted Date:  28 April 2015
  • Published Online:  05 May 2015

/

返回文章
返回