Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-parameter photoacoustic imaging and its application in biomedicine

Yin Jie Tao Chao Liu Xiao-Jun

Citation:

Multi-parameter photoacoustic imaging and its application in biomedicine

Yin Jie, Tao Chao, Liu Xiao-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photoacoustic imaging is a hybrid imaging technique based on the photoacoustic effect. As a non-invasive and non-ionizing modality, photoacoustic imaging takes the both merits of the conventional acoustic imaging and optical imaging. Firstly, the contrast of photoacoustic imaging primarily depends on the optical absorption. The unique optical spectra of atoms and molecules makes optical methods to be a widely used modality to probe the molecular and chemical information of biological tissue. Therefore, photoacoustic imaging has its inherent advantage in high-contrast functional and physiological imaging of biological tissue, as well as the optical imaging method. Secondly, photoacoustic imaging has the high spatial resolution in deep tissue in comparison with the pure optical imaging method. Since the strongly optical scattering in biological tissue, pure optical imaging method is difficult to obtain the high-resolution image in the tissue deeper than ~1 mm. Whereas, acoustic wave suffers much less from scattering than optical wave, the acoustic scattering coefficient is about 2-3 orders of magnitude less than the optical scattering coefficient. Photoacoustic imaging can achieve a fine resolution in deep tissue, which equivalent to 1/200 of the imaging depth. Thirdly, non-ionizing radiation used for photoacoustic imaging is much safer than X-ray. Moreover, the low-temperature rises make photoacoustic imaging be safely used in live tissue. A laser-induced temperature rise of 1 mK yields an initial pressure of ~800 Pa in soft tissue. Such a sound pressure level has reached the sensitivities of typical ultrasonic transducers. Fourthly, photoacoustic imaging has the ability of extracting multiple contrasts, including biochemical parameter, biomechanical parameter, blood velocity distribution, tissue temperature, and microstructure information. Photoacoustic imaging can capture more specific and reliable information about the tissue structure, function, metabolism, molecule, and gene. As a result, photoacoustic imaging has become one of the fastest growing biomedical imaging techniques in the past decade.#br#In this review, we will explain photoacoustic effect and the principle of photoacoustic imaging. Then, we introduce the two classical photoacoustic imaging schemes, including photoacoustic tomography and photoacoustic microscopy. Their main specifications, such as resolution, are also preflents. We review the ability of photoacoustic imaging in extracting multiple contrasts and discuss their biomedicine applications. In addition, we also introduce the remarkable breakthroughs in super-resolution photoacoustic imaging. Finally, we look the further development and the limitations of photoacoustic imaging.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921504), the National Natural Science Foundation of China (Grant Nos. 11422439, 11274171, 11274167), and SRFDP (Grant No. 20120091110001).
    [1]

    Wang L V, Hu S 2012 Science 335 1458

    [2]

    Zeng Z P, Xie W M, Zhang J Y, Li L, Chen S Q, Li Z F, Li H 2012 Acta Phys. Sin. 61 097801

    [3]

    Chen B Z, Yi H, Yang J G, Chi Z H, Rong J, Hu B, Jiang H B 2014 Acta Phys. Sin. 63 084204

    [4]

    Wang L V 2009 Nat. Photonics 3 503

    [5]

    Li C, Wang L V 2009 Phys. Med. Biol. 54 R59

    [6]

    Lou C, Yang S, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101

    [7]

    Culver J P, Ntziachristos V, Holboke M J, Yodh A G 2001 Opt. Lett. 26 701

    [8]

    Savage N 2013 Nature 502 S90

    [9]

    Xu M, Wang L V 2006 Rev. Sci. Instrum. 77 041101

    [10]

    Calasso I G, Craig W, Diebold G J 2001 Phys. Rev. Lett. 86 3550

    [11]

    Diebold G J, Khan M I, Park S M 1990 Science 250 101

    [12]

    Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803

    [13]

    Xu M H, Wang L V 2005 Phys. Rev. E 71 016706

    [14]

    Haltmeier M, Scherzer O, Burgholzer P, Nuster R, Paltauf G 2007 Math. Mod. Meth. Appl. S 17 635

    [15]

    Köstli K P, Beard P C 2003 Appl. Optics 42 1899

    [16]

    Wu D, Tao C, Liu X J 2013 Opt. Express 21 18061

    [17]

    Wu D, Tao C, Liu X J 2011 J. Appl. Phys. 109 084702

    [18]

    Zhang H F, Maslov K, Stoica G, Wang L V 2006 Nat. Biotechnol. 24 848

    [19]

    Yang J M, Favazza C, Chen R M, Yao J J, Cai X, Maslov K, Zhou Q F, Shung K K, Wang L V 2012 Nat. Med. 18 1297

    [20]

    Yao D K, Maslov K, Shung K K, Zhou Q, Wang L V 2010 Opt. Lett. 35 4139

    [21]

    Hu S, Maslov K, Wang L V 2011 Opt. Lett. 36 1134

    [22]

    Xu Z, Zhu Q, Wang L V 2011 J. Biomed. Opt. 16 066020

    [23]

    Xi L, Grobmyer S R, Wu L, Chen R M, Zhou G Y, Gutwein L G, Sun J J, Liao W J, Zhou Q F, Xie H K, Jiang H B 2012 Opt. Express 20 8726

    [24]

    Wu N, Ye S H, Ren Q S, Li C H 2014 Opt. Lett. 39 2451

    [25]

    Song W, Zheng W, Liu R M, Lin R Q, Huang H T, Gong X J, Yang S S, Zhang R, Song L 2014 Biomed. Opt. Express 5 4235

    [26]

    Huang G J, Si Z, Yang S H, Li C, Xing D 2012 J. Mater. Chem. 22 22575

    [27]

    Ku G, Wang X D, Xie X Y, Stoica G, Wang L V 2005 Appl. Optics 44 770

    [28]

    Favazza C P, Cornelius L A, Wang L V 2011 J. Biomed. Opt. 16 026004

    [29]

    Gao G D, Yang S H, Xing D 2011 Opt. Lett. 36 3341

    [30]

    Zhao Y, Yang S H, Chen C G, Xing D 2014 Opt. Lett. 39 2565

    [31]

    Sethuraman S, Aglyamov S R, Smalling R W, Emelianov S Y 2008 Ultrasound Med. Biol. 34 299

    [32]

    Yao J J, Ke H X, Tai S, Zhou Y, Wang L V 2013 Opt. Lett. 38 5228

    [33]

    Wang B, Emelianov S 2011 Biomed. Opt. Express 2 3072

    [34]

    Yao J J, Maslov K, Shi Y F, Taber L, Wang L V 2010 Opt. Lett. 35 1419

    [35]

    Song W, Liu W Z, Zhang H F 2013 Appl. Phys. Lett. 102 203501

    [36]

    Strohm E M, Berndl E S L, Kolios M C 2013 Biophys. J. 105 59

    [37]

    Kumon R E, Deng C X, Wang X 2011 Ultrasound Med. Biol. 37 834

    [38]

    Saha R K, Kolios M C 2011 J. Acoust. Soc. Am. 129 2935

    [39]

    Yang Y Q, Wang S H, Tao C, Wang X D, Liu X J 2012 Appl. Phys. Lett. 101 034105

    [40]

    Xu G, Dar I A, Tao C, Liu X J, Deng C X, Wang X D 2012 Appl. Phys. Lett. 101 221102

    [41]

    Wang S H, Tao C, Wang X D, Liu X J 2013 Appl. Phys. Lett. 102 114102

    [42]

    Xu G, Meng Z X, Lin J D, Yuan J, Carson P L, Joshi B, Wang X D 2014 Radiology 271 248

    [43]

    Rao B, Maslov K, Danielli A, Chen R M, Shung K K, Zhou Q F, Wang L V 2011 Opt. Lett. 36 1137

    [44]

    Nedosekin D A, Galanzha E I, Dervishi E, Biris A S, Zharov V P 2014 Small 10135

    [45]

    Yao J Y, Wang L D, Li C Y, Zhang C, Wang L V 2014 Phys. Rev. Lett. 112 014302

    [46]

    Jin X, Wang L V 2006 Phys. Med. Biol. 51 6437

    [47]

    Jose J, Willemink R G H, Steenbergen W, Slump C H, Leeuwen T G, Manohar S 2012 Med. Phys. 39 7262

    [48]

    Yoon C H, Kang J, Han S H, Yoo Y M, Song T K, Chang J H 2012 Opt. Express 20 3082

    [49]

    Huang C, Wang K, Nie L M, Wang L V 2013 IEEE T. Med. Imaging 32 1097

    [50]

    Zhang C, Wang Y Y 2008 Phys. Med. Biol. 53 4971

    [51]

    Wu D, Wang X D, Tao C, Liu X J 2011 Appl. Phys. Lett. 99 244102

  • [1]

    Wang L V, Hu S 2012 Science 335 1458

    [2]

    Zeng Z P, Xie W M, Zhang J Y, Li L, Chen S Q, Li Z F, Li H 2012 Acta Phys. Sin. 61 097801

    [3]

    Chen B Z, Yi H, Yang J G, Chi Z H, Rong J, Hu B, Jiang H B 2014 Acta Phys. Sin. 63 084204

    [4]

    Wang L V 2009 Nat. Photonics 3 503

    [5]

    Li C, Wang L V 2009 Phys. Med. Biol. 54 R59

    [6]

    Lou C, Yang S, Ji Z, Chen Q, Xing D 2012 Phys. Rev. Lett. 109 218101

    [7]

    Culver J P, Ntziachristos V, Holboke M J, Yodh A G 2001 Opt. Lett. 26 701

    [8]

    Savage N 2013 Nature 502 S90

    [9]

    Xu M, Wang L V 2006 Rev. Sci. Instrum. 77 041101

    [10]

    Calasso I G, Craig W, Diebold G J 2001 Phys. Rev. Lett. 86 3550

    [11]

    Diebold G J, Khan M I, Park S M 1990 Science 250 101

    [12]

    Wang X D, Pang Y J, Ku G, Xie X Y, Stoica G, Wang L V 2003 Nat. Biotechnol. 21 803

    [13]

    Xu M H, Wang L V 2005 Phys. Rev. E 71 016706

    [14]

    Haltmeier M, Scherzer O, Burgholzer P, Nuster R, Paltauf G 2007 Math. Mod. Meth. Appl. S 17 635

    [15]

    Köstli K P, Beard P C 2003 Appl. Optics 42 1899

    [16]

    Wu D, Tao C, Liu X J 2013 Opt. Express 21 18061

    [17]

    Wu D, Tao C, Liu X J 2011 J. Appl. Phys. 109 084702

    [18]

    Zhang H F, Maslov K, Stoica G, Wang L V 2006 Nat. Biotechnol. 24 848

    [19]

    Yang J M, Favazza C, Chen R M, Yao J J, Cai X, Maslov K, Zhou Q F, Shung K K, Wang L V 2012 Nat. Med. 18 1297

    [20]

    Yao D K, Maslov K, Shung K K, Zhou Q, Wang L V 2010 Opt. Lett. 35 4139

    [21]

    Hu S, Maslov K, Wang L V 2011 Opt. Lett. 36 1134

    [22]

    Xu Z, Zhu Q, Wang L V 2011 J. Biomed. Opt. 16 066020

    [23]

    Xi L, Grobmyer S R, Wu L, Chen R M, Zhou G Y, Gutwein L G, Sun J J, Liao W J, Zhou Q F, Xie H K, Jiang H B 2012 Opt. Express 20 8726

    [24]

    Wu N, Ye S H, Ren Q S, Li C H 2014 Opt. Lett. 39 2451

    [25]

    Song W, Zheng W, Liu R M, Lin R Q, Huang H T, Gong X J, Yang S S, Zhang R, Song L 2014 Biomed. Opt. Express 5 4235

    [26]

    Huang G J, Si Z, Yang S H, Li C, Xing D 2012 J. Mater. Chem. 22 22575

    [27]

    Ku G, Wang X D, Xie X Y, Stoica G, Wang L V 2005 Appl. Optics 44 770

    [28]

    Favazza C P, Cornelius L A, Wang L V 2011 J. Biomed. Opt. 16 026004

    [29]

    Gao G D, Yang S H, Xing D 2011 Opt. Lett. 36 3341

    [30]

    Zhao Y, Yang S H, Chen C G, Xing D 2014 Opt. Lett. 39 2565

    [31]

    Sethuraman S, Aglyamov S R, Smalling R W, Emelianov S Y 2008 Ultrasound Med. Biol. 34 299

    [32]

    Yao J J, Ke H X, Tai S, Zhou Y, Wang L V 2013 Opt. Lett. 38 5228

    [33]

    Wang B, Emelianov S 2011 Biomed. Opt. Express 2 3072

    [34]

    Yao J J, Maslov K, Shi Y F, Taber L, Wang L V 2010 Opt. Lett. 35 1419

    [35]

    Song W, Liu W Z, Zhang H F 2013 Appl. Phys. Lett. 102 203501

    [36]

    Strohm E M, Berndl E S L, Kolios M C 2013 Biophys. J. 105 59

    [37]

    Kumon R E, Deng C X, Wang X 2011 Ultrasound Med. Biol. 37 834

    [38]

    Saha R K, Kolios M C 2011 J. Acoust. Soc. Am. 129 2935

    [39]

    Yang Y Q, Wang S H, Tao C, Wang X D, Liu X J 2012 Appl. Phys. Lett. 101 034105

    [40]

    Xu G, Dar I A, Tao C, Liu X J, Deng C X, Wang X D 2012 Appl. Phys. Lett. 101 221102

    [41]

    Wang S H, Tao C, Wang X D, Liu X J 2013 Appl. Phys. Lett. 102 114102

    [42]

    Xu G, Meng Z X, Lin J D, Yuan J, Carson P L, Joshi B, Wang X D 2014 Radiology 271 248

    [43]

    Rao B, Maslov K, Danielli A, Chen R M, Shung K K, Zhou Q F, Wang L V 2011 Opt. Lett. 36 1137

    [44]

    Nedosekin D A, Galanzha E I, Dervishi E, Biris A S, Zharov V P 2014 Small 10135

    [45]

    Yao J Y, Wang L D, Li C Y, Zhang C, Wang L V 2014 Phys. Rev. Lett. 112 014302

    [46]

    Jin X, Wang L V 2006 Phys. Med. Biol. 51 6437

    [47]

    Jose J, Willemink R G H, Steenbergen W, Slump C H, Leeuwen T G, Manohar S 2012 Med. Phys. 39 7262

    [48]

    Yoon C H, Kang J, Han S H, Yoo Y M, Song T K, Chang J H 2012 Opt. Express 20 3082

    [49]

    Huang C, Wang K, Nie L M, Wang L V 2013 IEEE T. Med. Imaging 32 1097

    [50]

    Zhang C, Wang Y Y 2008 Phys. Med. Biol. 53 4971

    [51]

    Wu D, Wang X D, Tao C, Liu X J 2011 Appl. Phys. Lett. 99 244102

  • [1] Liu Jie, Chen Wei, Yang Qiu-Lin, Mu Gen, Gao Hao, Shen Tao, Yang Si-Hua, Zhang Zhen-Hui. Research and development of polarized photoacoustic imaging technology. Acta Physica Sinica, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [2] Xu Shou-Zhen, Xie Shi-Meng, Wu Dan, Chi Zi-Hui, Huang Lin. Ultrasound/photoacoustic dual-modality imaging based on acoustic scanning galvanometer. Acta Physica Sinica, 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [3] Xie Shi-Meng, Huang Lin, Wang Xue, Chi Zi-Hui, Tang Yong-Hui, Zheng Zhu, Jiang Hua-Bei. Reflection mode photoacoustic/thermoacoustic dual modality imaging based on hollow concave array. Acta Physica Sinica, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [4] Ultrasound/photoacoustic dual-modality imaging based on an acoustic scanning galvanometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211394
    [5] Sun Ming-Jian, Cheng Xing-Zhen, Wang Yan, Zhang Xin, Shen Yi, Feng Nai-Zhang. Method for detecting high-speed rail surface defects by photoacoustic signal. Acta Physica Sinica, 2016, 65(3): 038105. doi: 10.7498/aps.65.038105
    [6] Peng Dong-Qing, Xie Wen-Ming, Wu Shu-Lian, Tang Jia-Ming, Li Zhi-Fang, Li Hui. Phantom experimental photoacoustic scanning imaging of prostate based on internal light irradiation using cylindrical diffusing source. Acta Physica Sinica, 2015, 64(20): 207801. doi: 10.7498/aps.64.207801
    [7] Zhang Yu, Tang Zhi-Lie, Wu Yong-Bo, Shu Gang. Three-dimensional photoacoustic imaging technique based on acoustic lens. Acta Physica Sinica, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [8] Li Zheng-Hua, Li Xiang. Dynamic magnetic imaging by alternating force magnetic force mmicroscopy. Acta Physica Sinica, 2014, 63(17): 178503. doi: 10.7498/aps.63.178503
    [9] Jiao Yang, Jian Xiao-Hua, Xiang Yong-Jia, Cui Yao-Yao. Double spectrum analysis of photoacoustic signal. Acta Physica Sinica, 2013, 62(8): 087803. doi: 10.7498/aps.62.087803
    [10] Jian Xiao-Hua, Cui Yao-Yao, Xiang Yong-Jia, Han Zhi-Le. Adaptive optics multispectral photoacoustic imaging. Acta Physica Sinica, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [11] Wu Dan, Tao Chao, Liu Xiao-Jun. Study of the resolution of limited-view photoacoustic tomography. Acta Physica Sinica, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [12] Yang Si-Hua, Yin Guang-Zhi. Photoacoustic angiography for mouse brain cortex using near-infrared light. Acta Physica Sinica, 2009, 58(7): 4760-4765. doi: 10.7498/aps.58.4760
    [13] Xu Xiao-Hui, Li Hui. Scanning photoacoustic mammography with a focused transducer featuring extended focal zone. Acta Physica Sinica, 2008, 57(7): 4623-4628. doi: 10.7498/aps.57.4623
    [14] Xiang Liang-Zhong, Xing Da, Gu Huai-Min, Yang Di-Wu, Yang Si-Hua, Zeng Lü-Ming. Photoacoustic imaging of blood vessels based on modified simultaneous iterative reconstruction technique. Acta Physica Sinica, 2007, 56(7): 3911-3916. doi: 10.7498/aps.56.3911
    [15] Shu Hang, Zhu Pei-Ping, Wang Jun-Yue, Gao Xin, Yin Hong-Xia, Liu Bo, Yuan Qing-Xi, Huang Wan-Xia, Luo Shu-Qian, Gao Xiu-Lai, Wu Zi-Yu, Fang Shou-Xian. Diffraction enhanced imaging computer tomography. Acta Physica Sinica, 2006, 55(3): 1099-1106. doi: 10.7498/aps.55.1099
    [16] Chen Zhan-Xu, Tang Zhi-Lie, Wan Wei, He Yong-Heng. Photoacoustic tomography imaging based on an acoustic lens imaging system. Acta Physica Sinica, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [17] Zhang Hang. The optical tomography of tissues by a δ sound field. Acta Physica Sinica, 2004, 53(8): 2515-2519. doi: 10.7498/aps.53.2515
    [18] TANG ZHI-LIE, LIANG RUI-SHENG, CHANG HONG-SEN. THE IMAGING THEORY OF TWO-PHOTON AND MULTI-PHOTON CONFOCAL SCANNING MICROSCOPY. Acta Physica Sinica, 2000, 49(6): 1076-1080. doi: 10.7498/aps.49.1076
    [19] CHEN GUAN-YING, LI SHU-ZHONG. ANALYSIS OF IMAGE-FORMING MECHANISM FOR A NOVEL STEREO PSEUDO COLOR MICROSCOPE. Acta Physica Sinica, 1999, 48(1): 23-30. doi: 10.7498/aps.48.23
    [20] ZHANG SHU-YI, YU CHAO, MIAO YONG-ZHI, TANG ZHENG-YAN, GAO DUN-TANG. SCANNING PHOTOACOUSTIC MICROSCOPY. Acta Physica Sinica, 1982, 31(5): 704-708. doi: 10.7498/aps.31.704
Metrics
  • Abstract views:  5801
  • PDF Downloads:  916
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2015
  • Accepted Date:  02 March 2015
  • Published Online:  05 May 2015

/

返回文章
返回