Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene

Xue Bin Wang Hong-Yang Qin Meng Cao Yi Wang Wei

Citation:

A photocatalysis system based on composite nanostructures of controlable peptide nanotubes and graphene

Xue Bin, Wang Hong-Yang, Qin Meng, Cao Yi, Wang Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Self-assembly is the way that is used by Mother Nature to create complex materials of hierarchical shapes and diverse functionalities. The photosynthesis apparatus of plant is an example of such complex materials that can direct convert the sunlight energy into chemical energy. Inspired by this, many artificial photosynthesis systems have been successfully engineered. However, most of these systems were based on only one type of simple nanostructure, such as nanosphere or nanotube. The charge separation and exciton transfer in such systems may be further improved by combining multiple nano-structures. Here, we report a novel photo catalysis system based on composite nanostructures of controllable peptide nanotubes and graphene. We use the mixture of diphenylalanine (FF) and carboxyl graphene for the photo catalysis because they are stable under different solvent conditions and highly conductive, which can provide more paths for exciton transfer. Moreover, the diameters of the peptide nanotubes become thinner in the preflence of carboxyl graphene, leading to a more uniformly distributed system than simply using the peptide nanotubes alone. The FF peptide nanotubes can connect with the carbonyl graphene (CG) to form the composite nanostructures because of the π-π stacking interaction between benzene rings of FF and conjugated πup bond of CG. The composite nanostructures of controllable peptide nanotubes and graphene provide more transmission channels for the excitions since they can travel on the nanotubes, CG or the compound of the both. We also demonstrate that when the photo-harvesting ruthenium complex and catalytic platinum nanoparticles are deposited on the system, the nicotinamide adenine dinucleotide (NADP+) can reduce to NADPH. The catalytic efficiency and rate are much higher than thaose of other artificial photosynthesis systems reported in the literature. Surprisingly, we find that the catalytic efficiency of the combined system is better than the sum of separated systems with only FF nanotubes or carboxyl graphene. The high turnover frequency, high reaction rate, and low toxicity of this artificial photosynthesis system will make the combined system attractive for large-scale applications, including optoelectronic industry, energy industry, etc.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), and the National Natural Science Foundation of China (Grant No. 11334004, 91127026).
    [1]

    Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauss N 2001 Nature 411 909

    [2]

    Hasobe T 2010 Phys. Chem. Chem. Phys. 12 44

    [3]

    Kim J H,Lee M, Lee J S, Park C B 2011 Angew. Chem. 123 1196

    [4]

    Chen L, Honsho Y, Seki S, Jiang D 2010 J. Am. Chem. Soc. 132 6742

    [5]

    Peng H Q, Chen Y Z, Zhao Y, Yang Q Z, Wu L Z, Tung C H, Zhang L P, Tong Q X 2012 Angew. Chem. 51 2088

    [6]

    Ryu J, Lim S Y, Park C B 2009 Adv Mater. 21 1577

    [7]

    Nam D H, Lee S H, Park C B 2010 Small 6 922

    [8]

    Zouni A, Witt H T, Kern J, Fromme P, Krauss N, Saenger W, Orth P 2001 Nature 409 739

    [9]

    Amunts A, Drory O, Nelson N 2007 Nature. 447 58

    [10]

    Kim J H,Lee M, Lee J S, Park C B 2012 Angew. Chem. 51 517

    [11]

    Xue B, Li Y, Yang F, Zhang C F, Qin M, Cao Y, Wan W 2014 Nanoscale 6 7832

    [12]

    Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, Samuel A P S, Kiebala D J, Wasielewski M R, Stupp S I 2014 Nature Chemistry 6 964

    [13]

    Reches M, Gazit E 2003 Science 300 625

    [14]

    Adler-Abramovich L, Reches M, Sedman V L, Allen S, Tendler S J B, Gazit E 2006 Langmuir 22 1313

    [15]

    Kol N, Adler-Abramovich L, Barlam D, Shneck R Z, Gazit E, Rousso I 2005 Nano Lett. 5 1343

    [16]

    Reches M, Gazit E 2003 Science 300 625

    [17]

    Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G 2009 Nano Lett. 9 3111

    [18]

    Andrade-Filho T, Ferreira F F, Alves W A, Rocha A R 2013 Phys. Chem. Chem. Phys. 15 7555

    [19]

    Ryu J, Park C B 2008 Adv. Mater. 20 3754

    [20]

    Li P, Chen X, Yang W 2013 Langmuir 29 8629

    [21]

    Schmidt-Mende L, Kroeze J E, Durrant J R, Nazeeruddin M K, Gratzel M 2005 Nano Lett. 5 1315

    [22]

    Fry N L, Mascharak P K 2011 Acc. Chem. Res. 44 289

    [23]

    Jiang K J, Masaki N, Xia J B, Noda S, Yanagida S 2006 Chem. Commun. 460

    [24]

    Chen C Y, Wang M, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M 2009 ACS Nano 3 3103

    [25]

    Happ B, Winter A, Hager M D, Schubert U S 2012 Chem. Soc. Rev. 41 2222

    [26]

    Wang M, Xiong S, Wu X, Chu P K 2011 Small 7 2801

    [27]

    Ryu J, Lim S Y, Park C B 2009 Adv. Mater. 21 1577

    [28]

    Baitalik S, Wang X Y, Schmehl R H 2004 J. Photochem. Photobiol C 5 55

  • [1]

    Jordan P, Fromme P, Witt H T, Klukas O, Saenger W, Krauss N 2001 Nature 411 909

    [2]

    Hasobe T 2010 Phys. Chem. Chem. Phys. 12 44

    [3]

    Kim J H,Lee M, Lee J S, Park C B 2011 Angew. Chem. 123 1196

    [4]

    Chen L, Honsho Y, Seki S, Jiang D 2010 J. Am. Chem. Soc. 132 6742

    [5]

    Peng H Q, Chen Y Z, Zhao Y, Yang Q Z, Wu L Z, Tung C H, Zhang L P, Tong Q X 2012 Angew. Chem. 51 2088

    [6]

    Ryu J, Lim S Y, Park C B 2009 Adv Mater. 21 1577

    [7]

    Nam D H, Lee S H, Park C B 2010 Small 6 922

    [8]

    Zouni A, Witt H T, Kern J, Fromme P, Krauss N, Saenger W, Orth P 2001 Nature 409 739

    [9]

    Amunts A, Drory O, Nelson N 2007 Nature. 447 58

    [10]

    Kim J H,Lee M, Lee J S, Park C B 2012 Angew. Chem. 51 517

    [11]

    Xue B, Li Y, Yang F, Zhang C F, Qin M, Cao Y, Wan W 2014 Nanoscale 6 7832

    [12]

    Weingarten A S, Kazantsev R V, Palmer L C, McClendon M, Koltonow A R, Samuel A P S, Kiebala D J, Wasielewski M R, Stupp S I 2014 Nature Chemistry 6 964

    [13]

    Reches M, Gazit E 2003 Science 300 625

    [14]

    Adler-Abramovich L, Reches M, Sedman V L, Allen S, Tendler S J B, Gazit E 2006 Langmuir 22 1313

    [15]

    Kol N, Adler-Abramovich L, Barlam D, Shneck R Z, Gazit E, Rousso I 2005 Nano Lett. 5 1343

    [16]

    Reches M, Gazit E 2003 Science 300 625

    [17]

    Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G 2009 Nano Lett. 9 3111

    [18]

    Andrade-Filho T, Ferreira F F, Alves W A, Rocha A R 2013 Phys. Chem. Chem. Phys. 15 7555

    [19]

    Ryu J, Park C B 2008 Adv. Mater. 20 3754

    [20]

    Li P, Chen X, Yang W 2013 Langmuir 29 8629

    [21]

    Schmidt-Mende L, Kroeze J E, Durrant J R, Nazeeruddin M K, Gratzel M 2005 Nano Lett. 5 1315

    [22]

    Fry N L, Mascharak P K 2011 Acc. Chem. Res. 44 289

    [23]

    Jiang K J, Masaki N, Xia J B, Noda S, Yanagida S 2006 Chem. Commun. 460

    [24]

    Chen C Y, Wang M, Li J Y, Pootrakulchote N, Alibabaei L, Ngoc-le C H, Decoppet J D, Tsai J H, Gratzel C, Wu C G, Zakeeruddin S M, Gratzel M 2009 ACS Nano 3 3103

    [25]

    Happ B, Winter A, Hager M D, Schubert U S 2012 Chem. Soc. Rev. 41 2222

    [26]

    Wang M, Xiong S, Wu X, Chu P K 2011 Small 7 2801

    [27]

    Ryu J, Lim S Y, Park C B 2009 Adv. Mater. 21 1577

    [28]

    Baitalik S, Wang X Y, Schmehl R H 2004 J. Photochem. Photobiol C 5 55

  • [1] Zhang Hong-Yan, Bao Li-Hong, Chao Luo-Meng, Zhao Feng-Qi, Liu Zi-Zhong. Optical absorption and thermionic emission mechanism of multi-functional La1–x Srx B6 hexaborides. Acta Physica Sinica, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [2] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [3] Pan Xiao-Jian, Bao Li-Hong, Ning Jun, Zhao Feng-Qi, Chao Luo-Meng, Liu Zi-Zhong. Synthesis and optical absorption properties of nanocrystalline rare earth hexaborides Nd1–xEuxB6 powders. Acta Physica Sinica, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [4] Yu Peng, Wang Bao-Qing, Wu Xiao-Hu, Wang Wen-Hao, Xu Hong-Xing, Wang Zhi-Ming. Circular dichroism of honeycomb-shaped elliptical hole absorber. Acta Physica Sinica, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [5] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [6] Cheng Da-Wei, Bao Li-Hong, Zhang Hong-Yan, Pan Xiao-Jian, Zhao Feng-Qi, O. Tegus, Chao Luo-Meng. Nanocrystalline CeB6 and SmB6 powder prepared by evaporative condensation method and their visible light transparency. Acta Physica Sinica, 2019, 68(24): 246101. doi: 10.7498/aps.68.20191312
    [7] Hu Jun,  Gao Yi. Interfacial water and catalysis. Acta Physica Sinica, 2019, 68(1): 016803. doi: 10.7498/aps.68.20182180
    [8] Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Physica Sinica, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [9] Ren Chao, Li Xiu-Yan, Luo Quan-Wei, Liu Rui-Ping, Yang Zhi, Xu Li-Chun. Electronic structure and optical absorption properties of -AgVO3 with vacancy defects. Acta Physica Sinica, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [10] Zhai Shun-Cheng, Guo Ping, Zheng Ji-Ming, Zhao Pu-Ju, Suo Bing-Bing, Wan Yun. First principle study of electronic structures and optical absorption properties of O and S doped graphite phase carbon nitride (g-C3N4)6 quantum dots. Acta Physica Sinica, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [11] Bao Li-Hong, Chao Lu-Meng, Wei Wei, O. Tegus. Synthesis and optical absorption properties of LaxCe1-xB6 submicron powders. Acta Physica Sinica, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [12] Pu Nian-Nian, Li Hai-Rong, Xie Long-Zhen. Influence of NiOx hole-transporting layer on the light absorption of the polymer solar cells. Acta Physica Sinica, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [13] Di Guo-Qing. Surface morphology and optical properties of Ta2O5 films prepared by radio frequency sputtering. Acta Physica Sinica, 2011, 60(3): 038101. doi: 10.7498/aps.60.038101
    [14] Guo Zhao, Lu Bin, Jiang Xue, Zhao Ji-Jun. Structural, electronic, and optical properties of Li-n-1, Lin and Li+ n+1(n=20, 40) clusters by first-principles calculations. Acta Physica Sinica, 2011, 60(1): 013601. doi: 10.7498/aps.60.013601
    [15] Xiong Da-Yuan, Li Zhi-Feng, Chen Xiao-Shuang, Li Ning, Zhen Hong-Lou, Lu Wei. Metal sphere array for long wavelength quantum well infrared photodetectors optical coupling. Acta Physica Sinica, 2007, 56(11): 6648-6653. doi: 10.7498/aps.56.6648
    [16] Yang Guang, Chen Zheng-Hao. Optical properties of laser ablated Ag:BaTiO3 composite films. Acta Physica Sinica, 2006, 55(8): 4342-4346. doi: 10.7498/aps.55.4342
    [17] Cui Yong-Feng, Yuan Zhi-Hao. Structural phase transformation and optical absorption of capped TiO2 nanoparticles. Acta Physica Sinica, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [18] Qin Hua, Fu Ru-Lian, Gao Hong-Yun, Liu Juan, Shi Xin-Gang. Theoretical study of the pump light absorption inside a three-level solid state laser medium. Acta Physica Sinica, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [19] ZHANG QI-FENG, HOU SHI-MIN, ZHANG GENG-MIN, LIU WEI-MIN, XUE ZENG-QUAN, WU JIN-LEI. OPTICAL ABSORPTION OF Ag-BaO THIN FILM IN THE VISIBLE AND NEAR-INFRARED REGION WITH APPLIED ELECTRIC FIELD. Acta Physica Sinica, 2001, 50(3): 561-565. doi: 10.7498/aps.50.561
    [20] WANG YIN-HAI, MO JI-MEI, CAI WEI-LI, XU YAN-QI. NANO-Cu/Al2O3 ASSEMBLIES TEMPLATE SYNTHESIS AND OPTICAL ABSORPTION. Acta Physica Sinica, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
Metrics
  • Abstract views:  5437
  • PDF Downloads:  325
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2015
  • Accepted Date:  23 March 2015
  • Published Online:  05 May 2015

/

返回文章
返回