Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimal calculation of detection efficiency for thermal neutron sensitive microchannel plate

Wang Sheng Li Hang Cao Chao Wu Yang Huo He-Yong Tang Bin

Citation:

Optimal calculation of detection efficiency for thermal neutron sensitive microchannel plate

Wang Sheng, Li Hang, Cao Chao, Wu Yang, Huo He-Yong, Tang Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The traditional digital imaging of neutron radiography is based on neutron scintillation screen cooperated with charge coupled device (CCD) camera, whose spatial resolution and neutron detection efficiency are contradictory. Neutron detection method based on microchannel plates (MCP) could solve the problem appearing in traditional method. It could supply high spatial resolution, high neutron detection efficiency and high time resolution. It is of benefit to high-resolution neutron radiography and neutron energy choice imaging. Tremsin et al. [Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340] calculated the detection efficiency of thermal neutron sensitivity MCP in 2004. Then his team fabricated a prototype of neutron detection system based on MCP and carried out the neutron imaging experiments on several neutron sources. The experimental results show that spatial resolution is nearly 15 μm and neutron detection efficiency for cold neutron is more than 70%. In China, Yang Y G et al.[15] from Tsinghua University developed a neutron detection system based on MCP, and preliminary neutron experimental results indicate that spatial resolution is about 200 μm.#br#In order to find the optimal structure of MCP, in this paper we calculate the detection efficiency of thermal neutron sensitive MCP doped (or coated) by boron and gadolinium with Monte-Carlo method. The neutron detection efficiency P is determined by three terms P1, P2 and P3, which are related by P=P1× P2× P3. Here, P1 is the possibility that the neutrons are absorbed by MCP solid parts, P2 is the possibility that the secondary particle escapes into MCP channel and generates an electron avalanche, and P3 is the possibility that the electron avalanch is recorded by readout system. Theoretical analysis indicates that more solid parts of MCP can make P1 higher and increase the difficulty for secondary particle to escape, and make P2 lower. There may be an optimal geometry to make the total P maximal. This paper gives the calculation method of P1 and P2, and approximates P3 to 1. #br#The calculation results show that the neutron detection efficiency depends on channel diameter (or coated thickness) and material, but not on the structure of MCP. When the thickness of MCP is 0.4 mm, the pixel of MCP is 15 μm, and the neutron sensitivity material is 10B2O3, the optimal thermal neutron detection efficiency is more than 40% with a channel diameter of 8.0 μm for the doped MCP, and it is nearly 60% with a coated thickness of 1.5 μm for the coated MCP. With the same geometry parameters and the neutron sensitive material such as natural Gd2O3, the optimal thermal neutron detection efficiency is more than 30% with a channel diameter of 9.0 μm for the doped MCP, and it is more than 50% with a coated thickness of 0.5 μm for the coated MCP.
    • Funds: Project supported by the National High Technology Research and the Science Foundation of China Academy of Engineering Physics, China (Grant No. 2014B0103007), the Fund of Key Laboratory of Neutron Physics, China (Grant Nos. 2013CB01, 2012BB03) and the National Natural Science Foundation of China (Grant Nos. 11205138, 11375156).
    [1]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Kockelmann W, Schooneveld E M, Rhodes N J, Feller W B 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p1501

    [2]

    Cao C, Li H, Huo H Y, Tang K, Sun Y 2013 Acta Phys. Sin. 62 162801 (in Chinese) [曹超, 李航, 霍合勇, 唐科, 孙勇 2013 物理学报 62 162801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 物理学报 62 128801]

    [4]

    Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340

    [5]

    Tremsin A S, Feller W B, Downing R G 2005 Nucl. Instr. Meth. A 539 278

    [6]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Hull J S, Feller W B, Crow L, Cooper R G 2007 IEEE Nuclear Science Symposium Conference Record 26 Hawaii, USA, Oct. 26-Nov 3, 2007 p270

    [7]

    Vallerga J, McPhate J, Tremsin A, Siegmund O 2008 Nucl. Instr. Meth. A 591 151

    [8]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Feller W B, Crow L, Cooper R G 2008 Nucl. Instr. Meth. A 592 374

    [9]

    Tremsin A S, McPhate J B, Vallerg J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 604 140

    [10]

    Tremsin A S, Mhlbauer M J, Schillinger B, McPhate J B, Vallerga J V, Siegmund O W, Feller W B 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, Oct. 25-31, 2009 p4026

    [11]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 605 103

    [12]

    Lu N H, Yang Y G 2010 The 15th Academic Annual Conference of Chinese Nuclear Electronics and Nuclear Detection Technology Guiyang, China, August 13-18, 2010 p332 (in Chinese) [陆年华, 杨祎罡 2010 第十五届全国核电子学与核探测技术学术年会论文集 贵阳 8月13-18日, 2010 第332页]

    [13]

    Tian Y, Lu N H, Yang Y G, Huang W Q 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p196

    [14]

    L N H, Yang Y G, L J W, Pan J S, Liang M C, Wang X W, Li Y J 2012 Phys. Proced. 26 61

    [15]

    Pan J, Yang Y, Tian Y, Zeng M, Deng T, Xu W, Han X, Sun S, L J 2013 JINST 8 01015

    [16]

    Sei M, Tatsuya N, Hideshi Y 2003 Nucl. Instr. Meth. A 513 538

  • [1]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Kockelmann W, Schooneveld E M, Rhodes N J, Feller W B 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p1501

    [2]

    Cao C, Li H, Huo H Y, Tang K, Sun Y 2013 Acta Phys. Sin. 62 162801 (in Chinese) [曹超, 李航, 霍合勇, 唐科, 孙勇 2013 物理学报 62 162801]

    [3]

    Wang S, Zou Y B, Wen W W, Li H, Liu S Q, Wang H, Lu Y R, Tang G Y, Guo Z Y 2013 Acta Phys. Sin. 62 128801 (in Chinese) [王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞 2013 物理学报 62 128801]

    [4]

    Tremsin A S, Feller W B, Downing R G, Mildner D R 2004 U. S. Government Work not Protected by U. S. Copyright p340

    [5]

    Tremsin A S, Feller W B, Downing R G 2005 Nucl. Instr. Meth. A 539 278

    [6]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Hull J S, Feller W B, Crow L, Cooper R G 2007 IEEE Nuclear Science Symposium Conference Record 26 Hawaii, USA, Oct. 26-Nov 3, 2007 p270

    [7]

    Vallerga J, McPhate J, Tremsin A, Siegmund O 2008 Nucl. Instr. Meth. A 591 151

    [8]

    Tremsin A S, Vallerga J V, McPhate J B, Siegmund O W, Feller W B, Crow L, Cooper R G 2008 Nucl. Instr. Meth. A 592 374

    [9]

    Tremsin A S, McPhate J B, Vallerg J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 604 140

    [10]

    Tremsin A S, Mhlbauer M J, Schillinger B, McPhate J B, Vallerga J V, Siegmund O W, Feller W B 2009 IEEE Nuclear Science Symposium Conference Record Orlando, USA, Oct. 25-31, 2009 p4026

    [11]

    Tremsin A S, McPhate J B, Vallerga J V, Siegmund O W, Hull J S, Feller W B, Lehmann E 2009 Nucl. Instr. Meth. A 605 103

    [12]

    Lu N H, Yang Y G 2010 The 15th Academic Annual Conference of Chinese Nuclear Electronics and Nuclear Detection Technology Guiyang, China, August 13-18, 2010 p332 (in Chinese) [陆年华, 杨祎罡 2010 第十五届全国核电子学与核探测技术学术年会论文集 贵阳 8月13-18日, 2010 第332页]

    [13]

    Tian Y, Lu N H, Yang Y G, Huang W Q 2011 IEEE Nuclear Science Symposium Conference Record Valencia, Spain, Oct. 23-29, 2011 p196

    [14]

    L N H, Yang Y G, L J W, Pan J S, Liang M C, Wang X W, Li Y J 2012 Phys. Proced. 26 61

    [15]

    Pan J, Yang Y, Tian Y, Zeng M, Deng T, Xu W, Han X, Sun S, L J 2013 JINST 8 01015

    [16]

    Sei M, Tatsuya N, Hideshi Y 2003 Nucl. Instr. Meth. A 513 538

  • [1] Xu Xiao-Yan. Quantum Monte Carlo study of strongly correlated electrons. Acta Physica Sinica, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] Shangguan Dan-Hua, Yan Wei-Hua, Wei Jun-Xia, Gao Zhi-Ming, Chen Yi-Bing, Ji Zhi-Cheng. Efficient Monte Carlo algorithm of time-dependent particle transport problem in multi-physics coupling calculation. Acta Physica Sinica, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [4] Wang Li-Peng, Jiang Xin-Biao, Wu Hong-Chun, Fan Hui-Qing. Ab initio calculation of the thermal neutron scattering cross sections of uranium mononitride. Acta Physica Sinica, 2018, 67(20): 202801. doi: 10.7498/aps.67.20180834
    [5] Li Yong-Dong, Yan Yang-Jiao, Lin Shu, Wang Hong-Guang, Liu Chun-Liang. A fast single particle Monte-Carlo method of computing the breakdown threshold of multipactor in microwave device. Acta Physica Sinica, 2014, 63(4): 047902. doi: 10.7498/aps.63.047902
    [6] Lin Shu, Yan Yang-Jiao, Li Yong-Dong, Liu Chun-Liang. Monte-Carlo method of computing multipactor threshold in microwave devices. Acta Physica Sinica, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [7] Dai Chun-Juan, Liu Xi-Qin, Liu Zi-Li, Liu Bo-Lu. The Monte Carlo simulation of neutron shielding performance of boron carbide reinforced with aluminum composites. Acta Physica Sinica, 2013, 62(15): 152801. doi: 10.7498/aps.62.152801
    [8] Cao Zhu-Rong, Dong Jian-Jun, Yang Zheng-Hua, Zhan Xia-Yu, Yuan Zheng, Zhang Hai-Ying, Jiang Shao-En, Ding Yong-Kun. A new method of soft X-ray transmission band-pass. Acta Physica Sinica, 2013, 62(4): 045205. doi: 10.7498/aps.62.045205
    [9] Ding Xue-Cheng, Fu Guang-Sheng, Chu Li-Zhi, Deng Ze-Chao, Liang Wei-Hua, Zhao Ya-Jun, Wang Ying-Long. Influence of gas type on velocity splitting of ablated particles. Acta Physica Sinica, 2012, 61(15): 155207. doi: 10.7498/aps.61.155207
    [10] Pan Jing-Sheng, Qi Lu, Xiao Hong-Liang, Zhang Rong, Zhou Jian-Xun, Pu Dong-Dong, Lü Jing-Wen. Influence analysis of saturation effect of microchannel plate on dynamic range of streak cameras. Acta Physica Sinica, 2012, 61(19): 194211. doi: 10.7498/aps.61.194211
    [11] Liu Yong-An, Yan Qiu-Rong, Sheng Li-Zhi, Zhao Fei-Fei, Hu Hui-Jun, Zhao Bao-Sheng. Influence of charge cloud size on performance of UV photon-counting imaging detector. Acta Physica Sinica, 2011, 60(4): 048501. doi: 10.7498/aps.60.048501
    [12] Yuan Zheng, Liu Shen-Ye, Cao Zhu-Rong, Li Yun-Feng, Chen Tao, Li Hang, Zhang Hai-Ying, Chen Ming. Selective photoemission of Au photocathode. Acta Physica Sinica, 2010, 59(7): 4967-4971. doi: 10.7498/aps.59.4967
    [13] Zhao Fei-Fei, Liu Yong-An, Hu Hui-Jun, Zhao Bao-Sheng. Properties of photon counting imaging system with Si thin films. Acta Physica Sinica, 2010, 59(10): 7096-7104. doi: 10.7498/aps.59.7096
    [14] Yan Qiu-Rong, Zhao Bao-Sheng, Yang Hao, Liu Yong-An, Zhu Xiang-Ping, Li Mei. One-dimensional photon counting detector with vernier position sensitive anode. Acta Physica Sinica, 2010, 59(9): 6164-6171. doi: 10.7498/aps.59.6164
    [15] Fu Fang-Zheng, Li Ming. Calculating the threshold of random laser by using Monte Carlo method. Acta Physica Sinica, 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] Zhang Xing-Hua, Zhao Bao-Sheng, Liu Yong-An, Miao Zhen-Hua, Zhu Xiang-Ping, Zhao Fei-Fei. Gain characteristic of ultraviolet single photon imaging system. Acta Physica Sinica, 2009, 58(3): 1779-1784. doi: 10.7498/aps.58.1779
    [17] Hao Fan-Hua, Hu Guang-Chun, Liu Su-Ping, Gong Jian, Xiang Yong-Chun, Huang Rui-Liang, Shi Xue-Ming, Wu Jun. Monte-Carlo method in calculating the γ spectrum of plutonium volume source. Acta Physica Sinica, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [18] PAN ZHENG-YING, CHEN JIAN-XIN, WU SHI-MING, HUO YU-KUN. MONTE CARLO CALCULATION OF PREFERENTIAL SPUTTE-RING IN MULTI-COMPONENT TARGET. Acta Physica Sinica, 1990, 39(2): 319-324. doi: 10.7498/aps.39.319
    [19] CHEN GUI-YING, CHENG ZHI-XU, WU XIAN-NAN, RUAN JING-HUI. THERMAL NEUTRON INELASTIC SCATTERING OF PALLADIUM HYDRIDES (PdHx). Acta Physica Sinica, 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [20] . Acta Physica Sinica, 1975, 24(3): 210-214. doi: 10.7498/aps.24.210
Metrics
  • Abstract views:  5344
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  25 September 2014
  • Accepted Date:  03 November 2014
  • Published Online:  05 May 2015

/

返回文章
返回