Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field

He Min-Qing Dong Quan-Li Sheng Zheng-Ming Zhang Jie

Citation:

Shock wave amplification by shock wave self-generated magnetic field driven by laser and the external magnetic field

He Min-Qing, Dong Quan-Li, Sheng Zheng-Ming, Zhang Jie
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Shock wave is a common phenomenon in astrophysics. Shock wave acceleration has been regarded as a source of high-energy cosmic rays. Very strong magnetic field exists in the surrounding of the shock wave at the edge of the supernova remnants. But the mechanisms of generation and amplification of such a strong magnetic field are not clear yet. In this paper, the properties of shock wave driven by the laser irradiating on un-magnetized and magnetized plasmas are investigated using two-dimensional particle-in-cell (PIC) simulations. It is found that very strong spontaneous magnetic field can be generated around the laser-driven shock front in the un-magnetized plasma. The spontaneous magnetic field can store energy and accelerate electrons further. When an external magnetic field is introduced, the electrons and ions are accelerated more efficiently by the shock wave than in the un-magnetized plasma. The external magnetic field can transfer its energy to electrons and ions, and strengthen the shock wave. In simulations, the introduced external magnetic field has three different strengths: 1072 MG, 107.2 MG and 10.72 MG, which determine the shock structures through the driven currents. There are two single-polar magnetic arcs that constitute the shock structure when the external magnetic field is 1072 MG, i.e., one is the shock itself and the other is actually the reverse shock, whereas only one magnetic arc is produced but with a bipolar structure in the direction perpendicular to the shock propagation when the externally added magnetic fields are much lower (107.2 MG and 10.72 MG). The two bipolar magnetic structures will evolve into a single-polar arc when the externally added magnetic field is 107.2 MG, but they are kept for all the time when the external magnetic field is 10.72 MG. It can be explained by taking the Larmor radius into the consideration. That the amplification ratio of the magnetic field decreases as the introduced external magnetic field increases implies that the magnetic amplification in the space is possibly due to the local field generation rather than the field compression. An amplification ratio of tens of the external magnetic field is achieved due to the pseudo Rayleigh-Taylor instability, but still much smaller than that around the astrophysical shock front, indicating that other efficient mechanisms are responsible for the observed magnetic amplification around shocks in the supernova remnants.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305013, 11274152), the National Basic Research Program of China (Grant No. 2013CBA01500), and the National High Techology and Development Program of China.
    [1]

    Yuan D W, Li Y T 2015 Chin. Phys. B 24 015204

    [2]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2001 Nature 439 441

    [3]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2001 Nature 439 445

    [4]

    Forslund D W, Shonk C R 1970 Phys. Rev. Lett. 25 1699

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [7]

    Keshet U, Waxman E 2005 Phys. Rev. Lett. 94 111102

    [8]

    Lee R E, Chapman S C, Dendy R O 2005 Phys. Plasma 12 012901

    [9]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borghesi M, Romagnani L, Zepf M, Norimatsu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414

    [10]

    Honzawa T 1973 Plasma Physics 15 467

    [11]

    Devaux D, Fabbro R, Tollier L, Bartnicki E 1993 J. Appl. Phys. 74 2268

    [12]

    Humières E, Lefebvre E, Gremillet L, Malka V 2005 Phys. Plasma 12 062704

    [13]

    Sato M, Ohsawa Y 2006 Phys. Plasma 13 063110

    [14]

    Ucer D, Shapiro V D 2001 Phys. Rev. Lett. 87 075001

    [15]

    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23

    [16]

    Ness N F, Searce C S, Seek J B 1964 J. Geophys. Res. 69 3531

    [17]

    Bell A R 1978 Mon. Not. R. Astron. Soc. 182 147

    [18]

    Blandford R D, Ostriker J P 1978 Astrophys. J. Lett. 221 L29

    [19]

    Axford W I, Leer E, McKenzie J F 1982 Astron. Astrophys. 111 317

    [20]

    Lee M A, Fisk L A 1982 Space Sci. Rev. 32 205

    [21]

    Koyama K, Petre R, Gotthelf E V, Hwang U, Matsuura M, Ozaki M, Holt S S 1995 Nature 378 255

    [22]

    Vink J, Laming J M 2003 Appl. Phys. J. 584 758

    [23]

    Volk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

    [24]

    Drake R P 2000 Phys. Plasmas 7 4690

    [25]

    Pfeffermann E, Aschenbach B 1996 in Zimmermann H U, Truemper J E, Yorke H ed.: Röntgenstrahlung from the Universe (Report 263 MPE, Garching) 267-268

    [26]

    Hinton J A 2004 Astron. Rev. 48 331

    [27]

    Hofmann W 2003 Proc. 28th ICRC Tsukuba (Tokyo:Univ. Academy Press) p2811

    [28]

    Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576U

    [29]

    Xu H 2002 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [徐涵 2002 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [30]

    Ma Y Y 2004 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [马燕云 2004 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [31]

    Shao F Q 2002 Particle Simulations in Plasma (Beijing: Science Press) (in Chinese) [邵福球 2002 等离子体粒子模拟(北京: 科学出版社)]

    [32]

    Zheng J 2006 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [郑君 2006 博士学位论文 (北京: 中国科学院物理研究所)]

    [33]

    Chen M 2007 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [陈民 2007 博士学位论文 (北京: 中国科学院物理研究所)]

    [34]

    He M Q 2008 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [何民卿 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [35]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [36]

    Mason R J, Tabak M 1998 Phys. Rev. Lett. 80 524

    [37]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041

    [38]

    Kingham R J, Bell A R 2002 Phys. Rev. Lett. 84 045004

    [39]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [40]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R)

    [41]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Muhammad A B, Zhang J 2007 Phys. Plasmas 14 053120

    [42]

    Chen M, Sheng Z M, Dong Q L, He M Q, Weng S M, Li Y T, Zhang J 2007 Phys. Plasmas 14 113106

    [43]

    Denavit J 1992 Phys. Rev. Lett. 69 3052

    [44]

    Nakamura T, Kawata S 2003 Phys. Rev. E 67 026403

    [45]

    Völk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

  • [1]

    Yuan D W, Li Y T 2015 Chin. Phys. B 24 015204

    [2]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernández J C 2001 Nature 439 441

    [3]

    Schwoerer H, Pfotenhauer S, Jäckel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D, Esirkepov T 2001 Nature 439 445

    [4]

    Forslund D W, Shonk C R 1970 Phys. Rev. Lett. 25 1699

    [5]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002

    [6]

    Wei M S, Mangles S P D, Najmudin Z, Walton B, Gopal A, Tatarakis M, Dangor A E, Clark E L, Evans R G, Fritzler S, Clarke R J, Hernandez-Gomez C, Neely D, Mori W, Tzoufras M, Krushelnick K 2004 Phys. Rev. Lett. 93 155003

    [7]

    Keshet U, Waxman E 2005 Phys. Rev. Lett. 94 111102

    [8]

    Lee R E, Chapman S C, Dendy R O 2005 Phys. Plasma 12 012901

    [9]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borghesi M, Romagnani L, Zepf M, Norimatsu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414

    [10]

    Honzawa T 1973 Plasma Physics 15 467

    [11]

    Devaux D, Fabbro R, Tollier L, Bartnicki E 1993 J. Appl. Phys. 74 2268

    [12]

    Humières E, Lefebvre E, Gremillet L, Malka V 2005 Phys. Plasma 12 062704

    [13]

    Sato M, Ohsawa Y 2006 Phys. Plasma 13 063110

    [14]

    Ucer D, Shapiro V D 2001 Phys. Rev. Lett. 87 075001

    [15]

    Sagdeev R Z 1966 Rev. Plasma Phys. 4 23

    [16]

    Ness N F, Searce C S, Seek J B 1964 J. Geophys. Res. 69 3531

    [17]

    Bell A R 1978 Mon. Not. R. Astron. Soc. 182 147

    [18]

    Blandford R D, Ostriker J P 1978 Astrophys. J. Lett. 221 L29

    [19]

    Axford W I, Leer E, McKenzie J F 1982 Astron. Astrophys. 111 317

    [20]

    Lee M A, Fisk L A 1982 Space Sci. Rev. 32 205

    [21]

    Koyama K, Petre R, Gotthelf E V, Hwang U, Matsuura M, Ozaki M, Holt S S 1995 Nature 378 255

    [22]

    Vink J, Laming J M 2003 Appl. Phys. J. 584 758

    [23]

    Volk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

    [24]

    Drake R P 2000 Phys. Plasmas 7 4690

    [25]

    Pfeffermann E, Aschenbach B 1996 in Zimmermann H U, Truemper J E, Yorke H ed.: Röntgenstrahlung from the Universe (Report 263 MPE, Garching) 267-268

    [26]

    Hinton J A 2004 Astron. Rev. 48 331

    [27]

    Hofmann W 2003 Proc. 28th ICRC Tsukuba (Tokyo:Univ. Academy Press) p2811

    [28]

    Uchiyama Y, Aharonian F A, Tanaka T, Takahashi T, Maeda Y 2007 Nature 449 576U

    [29]

    Xu H 2002 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [徐涵 2002 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [30]

    Ma Y Y 2004 Ph. D. Dissertation (Changsha: Graduate School of National Defense Science and Technology University) (in Chinese) [马燕云 2004 博士学位论文 (长沙; 国防科学技术大学研究生院)]

    [31]

    Shao F Q 2002 Particle Simulations in Plasma (Beijing: Science Press) (in Chinese) [邵福球 2002 等离子体粒子模拟(北京: 科学出版社)]

    [32]

    Zheng J 2006 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [郑君 2006 博士学位论文 (北京: 中国科学院物理研究所)]

    [33]

    Chen M 2007 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [陈民 2007 博士学位论文 (北京: 中国科学院物理研究所)]

    [34]

    He M Q 2008 Ph. D. Dissertation (Beijing: Institute of Physics, Chinese Academy of Sciences) (in Chinese) [何民卿 2008 博士学位论文 (北京: 中国科学院物理研究所)]

    [35]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [36]

    Mason R J, Tabak M 1998 Phys. Rev. Lett. 80 524

    [37]

    Lasinski B F, Langdon A B, Hatchett S P, Key M H, Tabak M 1999 Phys. Plasmas 6 2041

    [38]

    Kingham R J, Bell A R 2002 Phys. Rev. Lett. 84 045004

    [39]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363 (in Chinese) [何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363]

    [40]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R)

    [41]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Muhammad A B, Zhang J 2007 Phys. Plasmas 14 053120

    [42]

    Chen M, Sheng Z M, Dong Q L, He M Q, Weng S M, Li Y T, Zhang J 2007 Phys. Plasmas 14 113106

    [43]

    Denavit J 1992 Phys. Rev. Lett. 69 3052

    [44]

    Nakamura T, Kawata S 2003 Phys. Rev. E 67 026403

    [45]

    Völk H J, Berezhko E G, Ksenofontov L T 2005 Astron. Astrophys. 433 229

  • [1] Li Tian-Cheng, Zhang Xiao-Hai, Sheng Zheng-Mao. Surface plasma wave excited by laser pulse obliquely incident on a double-layer plasma target and ts application. Acta Physica Sinica, 2023, 72(4): 045201. doi: 10.7498/aps.72.20221305
    [2] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] Zhao Jia-Yi, Hu Peng, Wang Yu-Lin, Wang Jin-Can, Tang Hui-Bo, Hu Guang-Yue. Optimization of pulsed intense magnetic field device for laser plasma experiment via inductively coupled coil. Acta Physica Sinica, 2021, 70(16): 165202. doi: 10.7498/aps.70.20210441
    [4] Zhu Xin-Zhe, Liu Wei-Yuan, Chen Min. Effects of slant angle of sharp plasma-vacuum boundary on electron injection in laser wakefield acceleration. Acta Physica Sinica, 2020, 69(3): 035201. doi: 10.7498/aps.69.20191332
    [5] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [6] Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie. Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction. Acta Physica Sinica, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [7] Zhou Wen, Ji Ke, Chen He-Ming. Parallel magneticcontrolled THz modulator based on two-dimensional magnetized plasma photonic crystal. Acta Physica Sinica, 2017, 66(5): 054210. doi: 10.7498/aps.66.054210
    [8] Bo Yong, Zhao Qing, Luo Xian-Gang, Fan Jia, Liu Ying, Liu Jian-Wei. Experimental study of the communication performance of electromagnetic wave in time-varying and magnetized plasma channel. Acta Physica Sinica, 2016, 65(5): 055201. doi: 10.7498/aps.65.055201
    [9] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [10] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [11] Chen Zhao-Quan, Xia Guang-Qing, Liu Ming-Hai, Zheng Xiao-Liang, Hu Ye-Lin, Li Ping, Xu Gong-Lin, Hong Ling-Li, Shen Hao-Yu, Hu Xi-Wei. PIC/MCC simulation of the ionization process of SWP influenced by gas pressure and SPP. Acta Physica Sinica, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [12] Ling Wei-Jun, Dong Quan-Li, Zhang Lei, Zhang Shao-Gang, Dong Zhong, Wei Kai-Bin, Wang Shou-Jun, He Min-Qing, Sheng Zheng-Ming, Zhang Jie. Laser driven shock accelerated ion energy spectrumbroadening mechanisms in over-dense plasmas. Acta Physica Sinica, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [13] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [14] Liu Shao-Bin, Gu Chang-Qing, Zhou Jian-Jiang, Yuan Nai-Chang. FDTD simulation for magnetized plasma photonic crystals. Acta Physica Sinica, 2006, 55(3): 1283-1288. doi: 10.7498/aps.55.1283
    [15] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Tang Chang-Jian, Xue Dong-Hai, Wang Wen-Xiang. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [16] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [17] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [18] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [19] Jian Guang-De, Dong Jia-Qi. Particle simulation method for the electron temperature gradient instability in toroidal plasmas. Acta Physica Sinica, 2003, 52(7): 1656-1662. doi: 10.7498/aps.52.1656
    [20] Tang De-Li, Sun Ai-Ping, Qui Xiao-Ming. . Acta Physica Sinica, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
Metrics
  • Abstract views:  5087
  • PDF Downloads:  360
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2014
  • Accepted Date:  08 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回