Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of growth angle and solidification rate on crystal growth of precious metal prepared by electron beam floating zone method

Li Shuang-Ming Geng Zhen-Bo Hu Rui Liu Yi Luo Xi-Ming

Citation:

Effects of growth angle and solidification rate on crystal growth of precious metal prepared by electron beam floating zone method

Li Shuang-Ming, Geng Zhen-Bo, Hu Rui, Liu Yi, Luo Xi-Ming
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Precious metals exhibit fascinating properties and extensive applications in chemical engineering, high-temperature measurement, and electronic industry. The microstructures of these metals are generally polycrystalline and the precious metals like Ir and Ru with polycrystalline microstructures are difficult to deform at room temperature. However, the single crystal of precious metal can be well deformed to the final product, and it can be effectively used as a material. In this paper, electron beam floating zone method (EBFZM) is employed to prepare single crystals of precious metals, due to the fact that precious metals, e. g. Ir and Ru have high melting points of 2443 ℃ and 2310 ℃ respectively, and no crucible can be used for this processing. Considering the fact that the height of floating zone plays a key role in EBFZM, we deduce the expression for height of floating zone in EBFZM based on pedestal growth and zone melting techniques. The effects of crystal growth angle, interface growth mechanism, and solidification rate on the height of floating zone are discussed. The results show that the heights of floating zone for six precious metals are in a sequence order of Ru >Pd >Ir >Pt >Ag >Au. The crystal growth angles of these metals are calculated in a range of 8.4°-10.7°. For the same growth angle, the heights of floating zone, calculated by the Pedestal growth, zone melting and Czochralski-like growth techniques, are close to each other. But for different growth angles, the height of floating zone increases with increasing the growth angle for pedestal growth and Czochralski-like growth techniques, different from zone melting technique. Meanwhile, the height of floating zone changes with interface growth mechanism and solidification rate. For the pedestal growth technique, the height of floating zone is low for continuous growth mechanism, and for zone melting technique, its height of floating zone, calculated from continuous growth mechanism, is larger than those from the dislocation and faceting growth mechanisms. Furthermore, it reveals that the growth angle and height of floating zone vary slightly with continuous growth mechanism. In addition, a predicted solidification rate of 2.4 mm/min, available for single-crystal growth of precious metals, is in agreement with the previous experimental results of single crystals Ir and Ru prepared by EBFZM.
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China-Yunnan Province (Grant No. U1202273).
    [1]

    Matucha K H (translated by Ding D Y) 1999 Structure and Properties of Nonferrous Alloys (Beijing: Science Press) pp413-450 (in Chinese) [马图哈 K H 主编 (丁道云等 译) 1999 非铁合金的结构与性能(北京: 科学出版社)第413-450页]

    [2]

    Li D X, Zhang Y L, Yuan H M 1991 Precious Metal Materials (Changshan: Central South University Press) pp1-57 (in Chinese) [黎鼎鑫, 张永俐, 袁弘鸣 1991 贵金属材料学 (湖南长沙: 中南工业大学出版社) 第1-57页]

    [3]

    Ohriner E K 2008 Plat. Met. Rev. 52 186

    [4]

    Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese) [张超, 唐鑫, 王永良, 张庆瑜 2005 物理学报 54 5791]

    [5]

    Chen J Y, Lim B, Lee E P, Xia Y N 2009 Nano Today 4 81

    [6]

    Sun J, He L B, Lo, Y C, Xu, T, Bi H C, Sun L T, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007

    [7]

    Savitskii E M, Prince A 1989 Handbook of Precious Metals (New York: Hemisphere Press) p25

    [8]

    Fu H Z, Guo J J, Liu L, Li J S 2008 Directional Solidification of Advanced Materials (Beijing: Science Press) p705 (in Chinese) [傅恒志, 郭景杰, 刘林, 李金山 2008 先进材料定向凝固(北京: 科学技术出版社) 第705页]

    [9]

    Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G, Vitek V 2005 Science 309 1059

    [10]

    Verstraete M J, Christpehe C J 2005 Appl. Phys. Lett. 86 191917

    [11]

    Otani S, Tanaka T, Ishizawa Y 1990 J. Cryst. Growth 106 498

    [12]

    Otani S, Ohsawa T 1999 J. Cryst. Growth 200 472

    [13]

    Behr G, Loser W, Apostu M O, Gruner W, Hucker M, Schramm L, Souptel D, Teresiak A, Werner J 2005 J. Cryst. Res. Technol. 40 21

    [14]

    Virozub A, Rasin I G, Brandon S 2008 J. Cryst. Growth 310 5416

    [15]

    Satunkin G A 2003 J. Cryst. Growth 255 170

    [16]

    Hurle D T J 1983 J. Cryst. Growth 63 13

    [17]

    Johansen T H 1992 J Cryst. Growth 118 353

    [18]

    Weinstein O, Brandon S 2004 J. Cryst. Growth 268 299

    [19]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p211

    [20]

    Min N B 1982 Physical Fundamentals of Crystal Growth (Shanghai: Shanghai Science & Technology Press) p398 (in Chinese) [闵乃本 1982 晶体生长的物理基础(上海: 上海科学技术出版社) 第398页]

    [21]

    Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T 2007 Rare Met. Mater. Eng. 36 367 (in Chinese) [胡忠武, 李中奎, 张清, 张廷杰, 张军良, 殷涛 2007 稀有金属材料与工程 36 367]

    [22]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p204

    [23]

    Wang X B, Lin X, Wang L L, Bai B B, Huang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 物理学报 62 108103]

    [24]

    Keene B J 1993 Inter. Mater. Rev. 38 157

    [25]

    Jiang Q, Lu H M 2008 Surf. Sci. Rep. 63 427

    [26]

    Zhang J, Lou L H 2007 J. Mater. Sci. Tech. 23 289

    [27]

    Li T 1998 Precious Met. 19 58 (in Chinese) [李廷 1998 贵金属 19 58]

  • [1]

    Matucha K H (translated by Ding D Y) 1999 Structure and Properties of Nonferrous Alloys (Beijing: Science Press) pp413-450 (in Chinese) [马图哈 K H 主编 (丁道云等 译) 1999 非铁合金的结构与性能(北京: 科学出版社)第413-450页]

    [2]

    Li D X, Zhang Y L, Yuan H M 1991 Precious Metal Materials (Changshan: Central South University Press) pp1-57 (in Chinese) [黎鼎鑫, 张永俐, 袁弘鸣 1991 贵金属材料学 (湖南长沙: 中南工业大学出版社) 第1-57页]

    [3]

    Ohriner E K 2008 Plat. Met. Rev. 52 186

    [4]

    Zhang C, Tang X, Wang Y L, Zhang Q Y 2005 Acta Phys. Sin. 54 5791 (in Chinese) [张超, 唐鑫, 王永良, 张庆瑜 2005 物理学报 54 5791]

    [5]

    Chen J Y, Lim B, Lee E P, Xia Y N 2009 Nano Today 4 81

    [6]

    Sun J, He L B, Lo, Y C, Xu, T, Bi H C, Sun L T, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007

    [7]

    Savitskii E M, Prince A 1989 Handbook of Precious Metals (New York: Hemisphere Press) p25

    [8]

    Fu H Z, Guo J J, Liu L, Li J S 2008 Directional Solidification of Advanced Materials (Beijing: Science Press) p705 (in Chinese) [傅恒志, 郭景杰, 刘林, 李金山 2008 先进材料定向凝固(北京: 科学技术出版社) 第705页]

    [9]

    Cawkwell M J, Nguyen-Manh D, Woodward C, Pettifor D G, Vitek V 2005 Science 309 1059

    [10]

    Verstraete M J, Christpehe C J 2005 Appl. Phys. Lett. 86 191917

    [11]

    Otani S, Tanaka T, Ishizawa Y 1990 J. Cryst. Growth 106 498

    [12]

    Otani S, Ohsawa T 1999 J. Cryst. Growth 200 472

    [13]

    Behr G, Loser W, Apostu M O, Gruner W, Hucker M, Schramm L, Souptel D, Teresiak A, Werner J 2005 J. Cryst. Res. Technol. 40 21

    [14]

    Virozub A, Rasin I G, Brandon S 2008 J. Cryst. Growth 310 5416

    [15]

    Satunkin G A 2003 J. Cryst. Growth 255 170

    [16]

    Hurle D T J 1983 J. Cryst. Growth 63 13

    [17]

    Johansen T H 1992 J Cryst. Growth 118 353

    [18]

    Weinstein O, Brandon S 2004 J. Cryst. Growth 268 299

    [19]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p211

    [20]

    Min N B 1982 Physical Fundamentals of Crystal Growth (Shanghai: Shanghai Science & Technology Press) p398 (in Chinese) [闵乃本 1982 晶体生长的物理基础(上海: 上海科学技术出版社) 第398页]

    [21]

    Hu Z W, Li Z K, Zhang Q, Zhang T J, Zhang J L, Yin T 2007 Rare Met. Mater. Eng. 36 367 (in Chinese) [胡忠武, 李中奎, 张清, 张廷杰, 张军良, 殷涛 2007 稀有金属材料与工程 36 367]

    [22]

    Duffar T 2010 Crystal Growth Processes Based on Capillarity (Chichester: John Wiley & Sons Ltd) p204

    [23]

    Wang X B, Lin X, Wang L L, Bai B B, Huang M, Huang W D 2013 Acta Phys. Sin. 62 108103 (in Chinese) [王贤斌, 林鑫, 王理林, 白贝贝, 王猛, 黄卫东 2013 物理学报 62 108103]

    [24]

    Keene B J 1993 Inter. Mater. Rev. 38 157

    [25]

    Jiang Q, Lu H M 2008 Surf. Sci. Rep. 63 427

    [26]

    Zhang J, Lou L H 2007 J. Mater. Sci. Tech. 23 289

    [27]

    Li T 1998 Precious Met. 19 58 (in Chinese) [李廷 1998 贵金属 19 58]

  • [1] Li Feng, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Deng Kai-Ming. Density functional study on the different behaviors of Pd and Pt coating on graphene. Acta Physica Sinica, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [2] Song Qing, Ji Li, Quan Wei-Long, Zhang Lei, Tian Miao, Li Hong-Xuan, Chen Jian-Min. Growth mechanism of hydrogenated carbon films: molecular dynamics simulations of the effects of low energy CH radical. Acta Physica Sinica, 2012, 61(3): 030701. doi: 10.7498/aps.61.030701
    [3] Chen Ming-Wen, Ni Feng, Wang Yan-Lin, Wang Zi-Dong, Xie Jian-Xin. Effect of interface kinetics on the interface morphology of a spherical crystal in the undercooled melt. Acta Physica Sinica, 2011, 60(6): 068103. doi: 10.7498/aps.60.068103
    [4] Xu Sheng-Rui, Zhang Jin-Cheng, Li Zhi-Ming, Zhou Xiao-Wei, Xu Zhi-Hao, Zhao Guang-Cai, Zhu Qing-Wei, Zhang Jin-Feng, Mao Wei, Hao Yue. The triangular pits eliminate of (1120) a-plane GaN growth by metal-orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [5] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Zhou Yu-Qin, Wu Zhong-Hua, Chen Xing. Studies on surface roughness and growth mechanisms of microcrystalline silicon films by grazing incidence X-ray reflectivity. Acta Physica Sinica, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [6] Yang Hang-Sheng. Surface growth mechanism of cubic boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Acta Physica Sinica, 2006, 55(8): 4238-4246. doi: 10.7498/aps.55.4238
    [7] Mao Hui-Bing, Jing Wei-Ping, Yu Jian-Guo, Wang Ji-Qing, Wang Li, Dai Ning. Kinetic Monte Carlo simulation of the epitaxial growth mechanism on the vicinal surface. Acta Physica Sinica, 2006, 55(10): 5435-5440. doi: 10.7498/aps.55.5435
    [8] Zhang Dong-Ping, Qi Hong-Ji, Shao Jian-Da, Fan Rui-Ying, Fan Zheng-Xiu. Mechanism of nodule growth in ion beam sputtering films. Acta Physica Sinica, 2005, 54(3): 1385-1389. doi: 10.7498/aps.54.1385
    [9] Gu Jin-Hua, Zhou Yu-Qin, Zhu Mei-Fang, Li Guo-Hua, Ding Kun, Zhou Bing-Qing, Liu Feng-Zhen, Liu Jin-Long, Zhang Qun-Fang. Study on growth mechanism of low-temperature prepared microcrystalline Si thin f ilms. Acta Physica Sinica, 2005, 54(4): 1890-1894. doi: 10.7498/aps.54.1890
    [10] Zhang Chao, Tang Xin, Wang Yong-Liang, Zhang Qing-Yu. Study on the influence of substitutional impurity on the stability of noble metal (111) surfaces by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(12): 5791-5796. doi: 10.7498/aps.54.5791
    [11] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. . Acta Physica Sinica, 2002, 51(10): 2286-2290. doi: 10.7498/aps.51.2286
    [12] CUI DA-FU, CHEN FAN, ZHAO TONG, SHI WEN-SHENG, CHEN ZHENG-HAO, ZHOU YUE-LIANG, LV HUI-BIN, YANG GUO-ZHEN, HUANG HUI-ZHONG, ZHANG HONG-XIA. TOPMOST SURFACE AND GROWTH MECHANISM OF BaTiO3 THIN FILM GROWN BY LAS ER MOLECULAR BEAM EPITAXY. Acta Physica Sinica, 2000, 49(9): 1878-1882. doi: 10.7498/aps.49.1878
    [13] SUN DA-LIANG, YU XI-LING, WANG YAN, GU QING-TIAN. TGS CRYSTAL GROWTH POLYMORPHISM AND SURFACE DIFFUSION GROWTH MECHANISM. Acta Physica Sinica, 2000, 49(9): 1873-1877. doi: 10.7498/aps.49.1873
    [14] NIU ZHI-CHUAN, ZHOU ZENG-QI, LIN YAO-WANG, LI XIN-FENG, ZHANG YI, HU XIONG WEI, Lü ZHEN-DONG, YUAN ZHI-LIANG, XU ZHONG-YING. InGaAs/GaAs STRAINED RIDGE QUANTUM WIRES GROWN-BY MBE ON NONPLANAR SUBSTRATE. Acta Physica Sinica, 1997, 46(5): 969-974. doi: 10.7498/aps.46.969
    [15] HAN FEI, MA BEN-KUN. GROWTH OF INTERFACE WITH A LAW AND SPATIAL CORRELATIONS IN A CONSERVATIONAL SYSTEM. Acta Physica Sinica, 1993, 42(11): 1806-1811. doi: 10.7498/aps.42.1806
    [16] HAN FEI, MA BEN-KUN. GROWTH OF INTERFACE WITH AN EXTERNAL FIELD. Acta Physica Sinica, 1993, 42(11): 1812-1816. doi: 10.7498/aps.42.1812
    [17] PAN SHI-HONG, MO DANG, K. K. CHYN, W. E. SPICER. A STUDY ON VALENCE-BAND PHOTOEMISSION SPECTRA OF NOBLE METAL-GaAs(110) INTERFACES. Acta Physica Sinica, 1987, 36(10): 1255-1263. doi: 10.7498/aps.36.1255
    [18] WU ZI-QIN, GAO QIAO-JUN, TANG XIAN-DE. THE MECHANISM OF THE GRAIN GROWTH OF SUPERCONDUCTING COMPOUND Nb3Sn. Acta Physica Sinica, 1981, 30(3): 428-432. doi: 10.7498/aps.30.428
    [19] MING NAI-BEN, YANG YONG-SHUN. THE GROWTH OF FACETS AND VICINAL INTERFACES ON CZOCHRALSKI-GROWN YAG SINGLE CRYSTALS. Acta Physica Sinica, 1979, 28(3): 285-296. doi: 10.7498/aps.28.285
    [20] T. S. KE, Y. K. WAN. MECHANISM OF GROWTH OF METAL WHISKERS BY MEANS OF VAPOUR REDUCTION. Acta Physica Sinica, 1961, 17(8): 34-40. doi: 10.7498/aps.17.34
Metrics
  • Abstract views:  5030
  • PDF Downloads:  621
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2014
  • Accepted Date:  26 December 2014
  • Published Online:  05 May 2015

/

返回文章
返回