Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the super transmission in a typical dielectric structure

Wang Juan-Juan Huang Zhi-Xiang Fang Ming Zhang Ya-Guang Wu Xian-Liang

Citation:

Study on the super transmission in a typical dielectric structure

Wang Juan-Juan, Huang Zhi-Xiang, Fang Ming, Zhang Ya-Guang, Wu Xian-Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Reflection is a natural phenomenon that occurs when light passes the interface between materials with different refractive index. In many applications, such as solar cells, introduction of a substrate will result in an increase in reflection. There are many ways to reduce the reflection from a substrate, which have been investigated so far, including dielectric interference coatings, surface texturing, adiabatic index matching, and scattering from plasmonic nanoparticles etc. Here we present an entirely new concept to eliminate reflection from a silicon wafer, which makes use of much simpler method than the ones reported before, and can be applied to any high-index material. Finite-difference-time-domain (FDTD) method and auxiliary differential equations are used in this paper to simulate a new structure that can suppress the reflection of light from a silicon surface over a broad spectral range. A two-dimensional periodic array of subwavelength silicon nanocylinders is designed, which possesses a phenomenon strongly substrate-coupled to the Mie resonances, and which can produce an extraordinary transmission phenomenon similar to the metal surface plasmon that yields almost zero total reflectance over the entire spectral range from ultraviolet to near-infrared. This new antireflection concept relies on the strong forward scattering that occurs when a scattering structure is placed in close proximity to a high-index substrate with a high optical density of states. For a detailed description of the problem, we have carried out some simulations. From the results, one can see that although nano-pillar covers only 30% of the substrate surface area, it can reduce the reflection from the surface from 30% to under 10% at the Mie resonance. For the purpose of reducing reflection from the substrate, this new structure designed may provide a reference for the actual solar cells and optical antenna design.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471001, 61101064, 51277001), the Science Fund for Distinguished Young Scholars of Anhui Province, China (Grant No. 1108085J01), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0596), the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant Nos. KJ2011A002, KJ2011A242, KJ2012A013), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20123401110009).
    [1]

    Ding M, Xue H, Wu B, Sun B B, Liu Z, Huang Z X, Wu X L 2013 Acta Phys. Sin. 62 044218 (in Chinese) [丁敏, 薛辉, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良 2013 物理学报 62 044218]

    [2]

    Zhang J C, Xiong L M, Fang M, He H B 2013 Chin. Phys. B 22 044201

    [3]

    He S X, Yu G J, Zhu Z Y 2012 International Conference on Solid State Device and Materials Los Angels, Elsevier, April 1-2, 2012 p854

    [4]

    Macleod H A 2001 Thin-Film Optical Filters (3rd) (Florida:CRC Press) p668

    [5]

    Lamers M W P E 2012 Prog. Photovolt 20 62

    [6]

    Southwell W H 1991 J. Opt. Soc. Am. 8 549

    [7]

    Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano. 6 5489

    [8]

    Pellegrini G, Mazzoldi P, Mattei G 2012 J. Phys. Chem. C 116 21536

    [9]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [10]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [11]

    Spinelli P, Hebbink M, Waele R, Black L, Lenzmann F, Polman A 2011 Nano Lett. 11 1760

    [12]

    Atwater H A, Polman A 2010 Nat. Mater 9 205

    [13]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [14]

    Vernon K C, Funston A M, Novo C, Gómez D E, Mulvaney P, Davis T J 2010 Nano Lett. 10 2080

    [15]

    Chen H J, Ming T, Zhang S R, Jin Z, Yang B C, Wang J F 2011 ACS Nano 5 4865

    [16]

    Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F, Lin H Q 2011 ACS Nano. 5 6754

    [17]

    Wu Y, Nordlander P 2010 J. Phys. Chem. C 114 7302

    [18]

    Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L 2010 Nano Lett. 10 439

    [19]

    Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192

    [20]

    Wang H, Wu B, Huang Z X, Wu X L 2013 Comput. Phys. Commun. 185 862

    [21]

    Wang H, Huang Z X, Wu X L, Ren X G, Wu B 2014 Acta Phys. Sin. 63 070203 (in Chinese) [王辉, 黄志祥, 吴先良, 任信刚, 吴博 2014 物理学报 63 070203]

    [22]

    Mie G 1908 Ann. Phys. 330 377

    [23]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Heppenheim:Wiley-VCH) p83

    [24]

    Deinega A, Valnev I, Potapkin B, Lozovik Y 2011 J. Opt. Am. A 28 770

    [25]

    Taflove A, Hagness S G 2000 Computational Electrodynamics:The Finite-Difference Time-domain Method (2rd) (London:Artech House Publishers) p235

    [26]

    Hu Q F, Xu H, Liu J, Zhuo H B, Chi L H, Jiang J, Yan Y H 2009 Comput. Eng. Sci 31 188 (in Chinese) [胡庆丰, 徐 涵, 刘 杰, 卓红斌, 迟利华, 蒋 杰, 晏益慧 2009 计算机工程与科学 31 188]

    [27]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 物理学报 61 194701]

    [28]

    Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K 2012 Phys. Rev. Lett. 108 097402

    [29]

    Miroshnichenko A E, Kivshar Y S 2012 Nano Lett. 12 6459

    [30]

    Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N 2012 Nano Lett. 12 3749

    [31]

    García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815

    [32]

    Huang Z, Koschny T, Soukoulis C M 2012 Phys. Rev. Lett. 108 187402

    [33]

    Rayleigh J W S 1907 Philos. Mag. 14 60

    [34]

    Kippenberg T J, Tchebotareva A L, Kalkman J, Polman A, Vahala K J 2009 Phys. Rev. Lett. 103 027

  • [1]

    Ding M, Xue H, Wu B, Sun B B, Liu Z, Huang Z X, Wu X L 2013 Acta Phys. Sin. 62 044218 (in Chinese) [丁敏, 薛辉, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良 2013 物理学报 62 044218]

    [2]

    Zhang J C, Xiong L M, Fang M, He H B 2013 Chin. Phys. B 22 044201

    [3]

    He S X, Yu G J, Zhu Z Y 2012 International Conference on Solid State Device and Materials Los Angels, Elsevier, April 1-2, 2012 p854

    [4]

    Macleod H A 2001 Thin-Film Optical Filters (3rd) (Florida:CRC Press) p668

    [5]

    Lamers M W P E 2012 Prog. Photovolt 20 62

    [6]

    Southwell W H 1991 J. Opt. Soc. Am. 8 549

    [7]

    Liu W, Miroshnichenko A E, Neshev D N, Kivshar Y S 2012 ACS Nano. 6 5489

    [8]

    Pellegrini G, Mazzoldi P, Mattei G 2012 J. Phys. Chem. C 116 21536

    [9]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [10]

    Knight M W, Wu Y, Lassiter J B, Nordlander P, Halas N J 2009 Nano Lett. 9 2188

    [11]

    Spinelli P, Hebbink M, Waele R, Black L, Lenzmann F, Polman A 2011 Nano Lett. 11 1760

    [12]

    Atwater H A, Polman A 2010 Nat. Mater 9 205

    [13]

    Catchpole K R, Polman A 2008 Appl. Phys. Lett. 93 191113

    [14]

    Vernon K C, Funston A M, Novo C, Gómez D E, Mulvaney P, Davis T J 2010 Nano Lett. 10 2080

    [15]

    Chen H J, Ming T, Zhang S R, Jin Z, Yang B C, Wang J F 2011 ACS Nano 5 4865

    [16]

    Chen H J, Shao L, Ming T, Woo K C, Man Y C, Wang J F, Lin H Q 2011 ACS Nano. 5 6754

    [17]

    Wu Y, Nordlander P 2010 J. Phys. Chem. C 114 7302

    [18]

    Cao L, Fan P, Vasudev A P, White J S, Yu Z, Cai W, Schuller J A, Fan S, Brongersma M L 2010 Nano Lett. 10 439

    [19]

    Ren X G, Huang Z X, Wu X L, Lu S L, Wang H, Wu L, Li S 2012 Comput. Phys. Commun. 183 1192

    [20]

    Wang H, Wu B, Huang Z X, Wu X L 2013 Comput. Phys. Commun. 185 862

    [21]

    Wang H, Huang Z X, Wu X L, Ren X G, Wu B 2014 Acta Phys. Sin. 63 070203 (in Chinese) [王辉, 黄志祥, 吴先良, 任信刚, 吴博 2014 物理学报 63 070203]

    [22]

    Mie G 1908 Ann. Phys. 330 377

    [23]

    Bohren C F, Huffman D R 1998 Absorption and Scattering of Light by Small Particles (Heppenheim:Wiley-VCH) p83

    [24]

    Deinega A, Valnev I, Potapkin B, Lozovik Y 2011 J. Opt. Am. A 28 770

    [25]

    Taflove A, Hagness S G 2000 Computational Electrodynamics:The Finite-Difference Time-domain Method (2rd) (London:Artech House Publishers) p235

    [26]

    Hu Q F, Xu H, Liu J, Zhuo H B, Chi L H, Jiang J, Yan Y H 2009 Comput. Eng. Sci 31 188 (in Chinese) [胡庆丰, 徐 涵, 刘 杰, 卓红斌, 迟利华, 蒋 杰, 晏益慧 2009 计算机工程与科学 31 188]

    [27]

    Lu S L, Wu X L, Ren X G, Mei Y S, Shen J, Huang Z X 2012 Acta Phys. Sin. 61 194701 (in Chinese) [鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥 2012 物理学报 61 194701]

    [28]

    Ginn J C, Brener I, Peters D W, Wendt J R, Stevens J O, Hines P F, Basilio L I, Warne L K 2012 Phys. Rev. Lett. 108 097402

    [29]

    Miroshnichenko A E, Kivshar Y S 2012 Nano Lett. 12 6459

    [30]

    Evlyukhin A B, Novikov S M, Zywietz U, Eriksen R L, Reinhardt C, Bozhevolnyi S I, Chichkov B N 2012 Nano Lett. 12 3749

    [31]

    García-Etxarri A, Gómez-Medina R, Froufe-Pérez L S, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz J J 2011 Opt. Express 19 4815

    [32]

    Huang Z, Koschny T, Soukoulis C M 2012 Phys. Rev. Lett. 108 187402

    [33]

    Rayleigh J W S 1907 Philos. Mag. 14 60

    [34]

    Kippenberg T J, Tchebotareva A L, Kalkman J, Polman A, Vahala K J 2009 Phys. Rev. Lett. 103 027

  • [1] Yang Qi-Li, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [2] Diffraction-induced quadrupolar lattice plasmon modes of high-quality factors for silver nanoparticle arrays. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211629
    [3] Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210855
    [4] Wang Hao-Ran, Lan Jun, Chen Jia-Hui, Li Yi-Feng. Sound field enhancement based on multiple-cavity metamaterial. Acta Physica Sinica, 2021, 70(15): 154301. doi: 10.7498/aps.70.20202172
    [5] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [6] Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju, Wei De-Quan. Double Fano resonance in gold nanotube embedded with a concentric elliptical cylinder. Acta Physica Sinica, 2019, 68(6): 067301. doi: 10.7498/aps.68.20182249
    [7] Li Ai-Yun, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Fano resonances in symmetric gold nanorod trimers. Acta Physica Sinica, 2019, 68(19): 197801. doi: 10.7498/aps.68.20190978
    [8] Liu Dan, Hu Sen, Xiao Ming. Study on unidirectional transmission in silicon photonic crystal heterojunctions. Acta Physica Sinica, 2017, 66(5): 054209. doi: 10.7498/aps.66.054209
    [9] Xu Tian-Ning, Li Xiang, Jia Wen-Wang, Sui Cheng-Hua, Wu Hui-Zhen. Localized surface plasmon resonance modes in Ag nanowires with pentagonal cross sections. Acta Physica Sinica, 2015, 64(24): 245201. doi: 10.7498/aps.64.245201
    [10] Liu Gui-Yuan, Song Hong-Sheng, Zhang Ning-Yu, Cheng Chuan-Fu. Phase singularities in femtosecond laser pulses transmitting through optical fiber probes. Acta Physica Sinica, 2015, 64(2): 024203. doi: 10.7498/aps.64.024203
    [11] Chen Wen-Bo, Gong Xue-Yu, Lu Xing-Qiang, Feng Jun, Liao Xiang-Bai, Huang Guo-Yu, Deng Xian-Jun. Analysis of one-dimensional electromagnetic wave transmission characteristics of plasma based on a kinetic theory model. Acta Physica Sinica, 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [12] Zhu Xiao-Min, Ren Xin-Cheng, Guo Li-Xin. Study on wide-band scattering from rectangular cross-section above rough land surface with exponential type distribution using FDTD. Acta Physica Sinica, 2014, 63(5): 054101. doi: 10.7498/aps.63.054101
    [13] Liu Jian-Xiao, Zhang Jun-Liang, Su Ming-Min. Finite-difference time domain method for the analysis of radar scattering characteristic of metal target coated with anisotropic ferrite. Acta Physica Sinica, 2014, 63(13): 137501. doi: 10.7498/aps.63.137501
    [14] Lu Si-Long, Wu Xian-Liang, Ren Xin-Gang, Mei Yi-Cai, Shen Jing, Huang Zhi-Xiang. Study of periodic dispersive structures using splitfield FDTD method. Acta Physica Sinica, 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [15] Xiao Xiao, Zhang Zhi-You, Xiao Zhi-Gang, Xu De-Fu, Deng Chi. The study on optical transfer function of silver superlens. Acta Physica Sinica, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [16] Wu Jing, Wang Ming. Colloidal photonic crystal microstructure fiber:propagation characteristics analysis. Acta Physica Sinica, 2012, 61(6): 064215. doi: 10.7498/aps.61.064215
    [17] Ren Xin-Cheng, Guo Li-Xin, Jiao Yong-Chang. Investigation of electromagnetic scattering interaction between the column with rectangular cross-section and rough land surface covered with snow using finite difference time domain method. Acta Physica Sinica, 2012, 61(14): 144101. doi: 10.7498/aps.61.144101
    [18] Liu Gui-Yuan, Teng Shu-Yun, Cheng Chuan-Fu, Song Hong-Sheng, Liu Man. Propagation of femtosecond laser pulses through metal-coated tapered fibre probe. Acta Physica Sinica, 2009, 58(11): 7613-7620. doi: 10.7498/aps.58.7613
    [19] Wu Zhen-Jun, Wang Li-Fang, Liao Cheng-Lin. A novel FDTD method for multi-conductor transmission lines terminating in frequency-dependent loads. Acta Physica Sinica, 2009, 58(9): 6146-6151. doi: 10.7498/aps.58.6146
    [20] Zhou Mei, Chen Xiao-Shuang, Xu Jing, Zeng Yong, Wu Yan-Rui, Lu Wei, Wang Lian-Wei, Chen Yu. Photonic band gap of two-dimensional photonic crystal based on silicon in mid-infrared. Acta Physica Sinica, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
Metrics
  • Abstract views:  5015
  • PDF Downloads:  750
  • Cited By: 0
Publishing process
  • Received Date:  17 October 2014
  • Accepted Date:  25 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回