Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics

Chen Fu-Zhen Qiang Hong-Fu Miao Gang Gao Wei-Ran

Citation:

Numerical simulation of fuel dispersal into cloud and its combustion and explosion with smoothed discrete particle hydrodynamics

Chen Fu-Zhen, Qiang Hong-Fu, Miao Gang, Gao Wei-Ran
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A fuel air cloud is formed under the driving force of the explosive detonation and then it’s ignited to explosion to attack the target. The existing numerical simulations are mainly limited to the fuel dispersal processes which are all based on mesh methods. The fuel particles in the air cloud are difficult to traced. Otherwise, the computing process is complex and could not be solved by the exiting methods for the chemical reaction and the forming and propagation of shock waves are both involved in the fuel combustion and explosion. Smoothed discrete particle hydrodynamics (SDPH), as a new method to solve the gas-particle two-phase flow, has been successfully used to simulate the aeolian sand transport, heat transfer and evaporation. Based on the previous work, the Jones-Wilkins-Lee (JWL) function is imported to describe the explosive detonation to expansion and it is solved by finite volume method. The fuel drops dispersed by explosion are traced by the improved smoothed particle hydrodynamics. The drop evaporation model and the EBU-Arrhenius combustion model for gas high-speed combustion are introduced to describe the combustion and detonation of fuel drops. Then we build a new SDPH method to simulate the warhead initiation, fuel dispersal, and the fuel second explosion. Firstly, we design a test that is the dispersal of circular fuel drops drove by explosive detonation to validate our new method. The changing of the explosive detonation pressure and the velocity fields of explosive and particles are analyzed and they are consistent with the theory. And then, the forming and developing of FAE cloud are simulated. Through comparing with the experiments, the shapes of the cloud by the two methods coincide with each other. The effects of different initiations on the cloud forming are also analyzed. Finally, based on the cloud group forming, the evaporation and combustion models are introduced to study the combustion and explosion of FAE. We obtain the velocity field and the distribution of combustion product. The result indicates that the fuel dispersal into cloud and its explosion can be simulated better with the mathematical model and computational method built in this paper. This finding supplies a more effective numerical method for the design and research on this type of weapon equipments.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51276192).
    [1]

    Samirant M, Smeets G, Baras Ch 1989 Propell. Explos. Pyrot. 14 47

    [2]

    Zhang Q, Qin B, Bai C H, Guo Y Y, Liu Q M, Liang H M 2007 Chinese J. Energ. Mater. 10 447 (in Chinese) [张奇, 覃彬, 白春华, 郭彦懿, 刘庆明, 梁慧敏 2007 含能材料 10 447]

    [3]

    Gao H Q, Lu F Y, Wang S L, Luo Y F, Yuan Y N 2010 J. Ballistics 22 58 (in Chinese) [高洪泉, 卢芳云, 王少龙, 罗永锋, 袁亚楠 2010 弹道学报 22 58]

    [4]

    Li X, Wang B L, Han Z, Wang X L 2013 Explos. Mater. 42 23 (in Chinese) [李席, 王伯良, 韩早, 王兴龙 2013 爆破器材 42 23]

    [5]

    Guo X Y 2006 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese) [郭学永 2006 博士学位论文(南京:南京理工大学)]

    [6]

    Jiang L, Bai C H, Liu Q M 2010 Explos. Shock Waves 30 588 (in Chinese) [蒋丽, 白春华, 刘庆明 2010 爆炸与冲击 30 588]

    [7]

    Sauer F, Stubbs T 1977 AD-A047385

    [8]

    Sedgwick R T, Krata H R 1976 AD-A159

    [9]

    Hui J M, Liu R H, Peng J H, Tang M J 1996 Chinese J Energ. Mater. 4 123 (in Chinese) [惠君明, 刘荣海, 彭金华, 汤明钧 1996 含能材料 4 123]

    [10]

    Zhang T, Hui J M, Xie L F, Guo X Y, Yu J 2004 Explos Shock Waves 24 176 (in Chinese) [张陶, 惠君明, 解立峰, 於津 2004 爆炸与冲击 24 176]

    [11]

    Xiong Z Z, Bai C H, Zhang Q, Liu Q M 2001 Blasting 18 83 (in Chinese) [熊祖钊, 白春华, 张奇, 刘庆明 2001 爆破 18 83]

    [12]

    Lin W, Zhou J, Fan X H, Lin Z Y 2015 Chin. Phys. B 24 014701

    [13]

    Rosenblatt M 1976 AD-BO-17905

    [14]

    Gardner D R 1979 SAND-90-0686

    [15]

    Glass M W 1978 SAND90

    [16]

    Ivandaev A I 1982 Fluid Dynam. 17 68

    [17]

    Xi Z D, Xie L F, Liu J C, Li J F 2004 Explos. Shock Waves 24 240 (in Chinese) [席志德, 解立峰, 刘家骢, 李剑锋 2004 爆炸与冲击 24 240

    [18]

    Xue S S, Liu J C, Zhu G S, Peng J H 1998 Explos. Shock Waves 18 296 (in Chinese) [薛社生, 刘家聪, 朱广圣, 彭金华 1998 爆炸与冲击 18 296]

    [19]

    Jia F 2014 MS Thesis (Nanjing:Nanjing University of Science and Technology) (in Chinese) [贾飞 2014 硕士学位论文(南京:南京理工大学)]

    [20]

    Chen J C, Zhang Q, Ma Q J, Huang Y, Liu X L, Shen S L, Li D 2014 Acta Armamentarii 35 972 (in Chinese) [陈嘉琛, 张奇, 马秋菊, 黄莹, 刘雪岭, 沈世磊, 李栋 2014 兵工学报 35 972]

    [21]

    Shi Y T, Zhang Q 2014 Chinese J Energ. Mater. 22 353 (in Chinese) [史远通, 张奇 2014 含能材料 22 353]

    [22]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 130202]

    [23]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 230206]

    [24]

    Dobratz B M 1981 Explosive Handbook (Livermore:Lawrence Livermore National Laboratory)

    [25]

    Qiang H F, Wang K P, Gao W R 2008 T. TianJin Univ. 14 495

  • [1]

    Samirant M, Smeets G, Baras Ch 1989 Propell. Explos. Pyrot. 14 47

    [2]

    Zhang Q, Qin B, Bai C H, Guo Y Y, Liu Q M, Liang H M 2007 Chinese J. Energ. Mater. 10 447 (in Chinese) [张奇, 覃彬, 白春华, 郭彦懿, 刘庆明, 梁慧敏 2007 含能材料 10 447]

    [3]

    Gao H Q, Lu F Y, Wang S L, Luo Y F, Yuan Y N 2010 J. Ballistics 22 58 (in Chinese) [高洪泉, 卢芳云, 王少龙, 罗永锋, 袁亚楠 2010 弹道学报 22 58]

    [4]

    Li X, Wang B L, Han Z, Wang X L 2013 Explos. Mater. 42 23 (in Chinese) [李席, 王伯良, 韩早, 王兴龙 2013 爆破器材 42 23]

    [5]

    Guo X Y 2006 Ph. D. Dissertation (Nanjing:Nanjing University of Science and Technology) (in Chinese) [郭学永 2006 博士学位论文(南京:南京理工大学)]

    [6]

    Jiang L, Bai C H, Liu Q M 2010 Explos. Shock Waves 30 588 (in Chinese) [蒋丽, 白春华, 刘庆明 2010 爆炸与冲击 30 588]

    [7]

    Sauer F, Stubbs T 1977 AD-A047385

    [8]

    Sedgwick R T, Krata H R 1976 AD-A159

    [9]

    Hui J M, Liu R H, Peng J H, Tang M J 1996 Chinese J Energ. Mater. 4 123 (in Chinese) [惠君明, 刘荣海, 彭金华, 汤明钧 1996 含能材料 4 123]

    [10]

    Zhang T, Hui J M, Xie L F, Guo X Y, Yu J 2004 Explos Shock Waves 24 176 (in Chinese) [张陶, 惠君明, 解立峰, 於津 2004 爆炸与冲击 24 176]

    [11]

    Xiong Z Z, Bai C H, Zhang Q, Liu Q M 2001 Blasting 18 83 (in Chinese) [熊祖钊, 白春华, 张奇, 刘庆明 2001 爆破 18 83]

    [12]

    Lin W, Zhou J, Fan X H, Lin Z Y 2015 Chin. Phys. B 24 014701

    [13]

    Rosenblatt M 1976 AD-BO-17905

    [14]

    Gardner D R 1979 SAND-90-0686

    [15]

    Glass M W 1978 SAND90

    [16]

    Ivandaev A I 1982 Fluid Dynam. 17 68

    [17]

    Xi Z D, Xie L F, Liu J C, Li J F 2004 Explos. Shock Waves 24 240 (in Chinese) [席志德, 解立峰, 刘家骢, 李剑锋 2004 爆炸与冲击 24 240

    [18]

    Xue S S, Liu J C, Zhu G S, Peng J H 1998 Explos. Shock Waves 18 296 (in Chinese) [薛社生, 刘家聪, 朱广圣, 彭金华 1998 爆炸与冲击 18 296]

    [19]

    Jia F 2014 MS Thesis (Nanjing:Nanjing University of Science and Technology) (in Chinese) [贾飞 2014 硕士学位论文(南京:南京理工大学)]

    [20]

    Chen J C, Zhang Q, Ma Q J, Huang Y, Liu X L, Shen S L, Li D 2014 Acta Armamentarii 35 972 (in Chinese) [陈嘉琛, 张奇, 马秋菊, 黄莹, 刘雪岭, 沈世磊, 李栋 2014 兵工学报 35 972]

    [21]

    Shi Y T, Zhang Q 2014 Chinese J Energ. Mater. 22 353 (in Chinese) [史远通, 张奇 2014 含能材料 22 353]

    [22]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 130202 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 130202]

    [23]

    Chen F Z, Qiang H F, Gao W R 2014 Acta Phys. Sin. 63 230206 (in Chinese) [陈福振, 强洪夫, 高巍然 2014 物理学报 63 230206]

    [24]

    Dobratz B M 1981 Explosive Handbook (Livermore:Lawrence Livermore National Laboratory)

    [25]

    Qiang H F, Wang K P, Gao W R 2008 T. TianJin Univ. 14 495

  • [1] Cao Shu-Li, Li Shou-Zhe, Niu Yu-Long, Li Rong-Yi, Zhu Hai-Long. Experimental study on microwave plasma discharge and combustion of premixed methane and air at atmospheric pressure. Acta Physica Sinica, 2023, 72(15): 155201. doi: 10.7498/aps.72.20230676
    [2] Yao Neng-Zhi, Wang Hao, Wang Bin, Wang Xue-Sheng. Venturi-effect rotating concentrators and nonreciprocity characteristics based on transformation hydrodynamics. Acta Physica Sinica, 2022, 71(10): 104701. doi: 10.7498/aps.71.20212361
    [3] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [4] Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong. Gas dynamics and combustion wave expanding velocity of laser induced plasma. Acta Physica Sinica, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [5] Yang Jie, Liu Qing-Quan, Dai Wei, Mao Xiao-Li, Zhang Jia-Hong, Li Min. Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation. Acta Physica Sinica, 2016, 65(9): 094209. doi: 10.7498/aps.65.094209
    [6] Dai Wei, Liu Qing-Quan, Yang Jie, Su Kai-Feng, Han Shang-Bang, Shi Jia-Chi. Computational fluid dynamics analysis and experimental study of sounding temperature sensor. Acta Physica Sinica, 2016, 65(11): 114701. doi: 10.7498/aps.65.114701
    [7] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [8] Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren. Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [9] Xu Ai-Guo, Zhang Guang-Cai, Ying Yang-Jun. Progess of discrete Boltzmann modeling and simulation of combustion system. Acta Physica Sinica, 2015, 64(18): 184701. doi: 10.7498/aps.64.184701
    [10] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [11] Lei Juan-Mian, Huang Can. An improved pre-processing method for somooth particle hydrodynamics. Acta Physica Sinica, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [12] Chen Fu-Zhen, Qiang Hong-Fu, Gao Wei-Ran. Numerical simulation of heat transfer in gas-particle two-phase flow with smoothed discrete particle hydrodynamics. Acta Physica Sinica, 2014, 63(23): 230206. doi: 10.7498/aps.63.230206
    [13] Yang Jin-Zhao, Xia Zhi-Xun, Hu Jian-Xin. Numerical studies of ignition and combustion of pulverized magnesium particle cloud. Acta Physica Sinica, 2013, 62(7): 074701. doi: 10.7498/aps.62.074701
    [14] Han Ya-Wei, Qiang Hong-Fu, Zhao Jiu-Ling, Gao Wei-Ran. A new repulsive model for solid boundary condition in smoothed particle hydrodynamics. Acta Physica Sinica, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [15] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, 2013, 62(20): 204501. doi: 10.7498/aps.62.204501
    [16] Qiang Hong-Fu, Liu Kai, Chen Fu-Zhen. Numerical implementation of deformation and motion of droplet at the interface between vapor and solid surface with smoothed particle hydrodynamics methodology. Acta Physica Sinica, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] Ma Tian-Peng, Hu Li-Qun, Chen Kai-Yun. Application of wavelet transform in the dynamic frequency spectrum analysis of magnetohydrodynamics oscillations on HT-7 Tokamak. Acta Physica Sinica, 2010, 59(10): 7209-7213. doi: 10.7498/aps.59.7209
    [18] YU XI-FENG, HU HUO-SHENG, HE LI-DUAN, JIANG ZHENG, LIU XIANG, HU ZHUANG-QI. MICROSTRUCTURAL FEATURE OF NANOPHASE Sn-Bi PARTICLES PRODUCED BY AN ELECTROHYDRODYNAMIC TECHNIQUE. Acta Physica Sinica, 1999, 48(6): 1030-1036. doi: 10.7498/aps.48.1030
    [19] KUANG GUANG-LI, G.WAIDMANN. THE PROPERTIES OF THE MHD OSCILLATIONS IN TEXTOR TOKAMAK PLASMAS. Acta Physica Sinica, 1994, 43(9): 1466-1475. doi: 10.7498/aps.43.1466
    [20] XIE XUE-GANG, CHEN SHI-GANG, HONG CHAO-SHENG. HYDRODYNAMIC EQUATION FOR A SUPERCONDUCTOR. Acta Physica Sinica, 1990, 39(4): 632-638. doi: 10.7498/aps.39.632
Metrics
  • Abstract views:  5387
  • PDF Downloads:  355
  • Cited By: 0
Publishing process
  • Received Date:  02 December 2014
  • Accepted Date:  12 March 2015
  • Published Online:  05 June 2015

/

返回文章
返回