Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on X band extended cosecant squared beam synthesis of micro-strip antenna arrays using genetic algorithm

Zhang Jin-Ling Wan Wen-Gang Zheng Zhan-Qi Gan Xi Zhu Xing-Yu

Citation:

Research on X band extended cosecant squared beam synthesis of micro-strip antenna arrays using genetic algorithm

Zhang Jin-Ling, Wan Wen-Gang, Zheng Zhan-Qi, Gan Xi, Zhu Xing-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Synthesis of desired radiation patterns without an optimization algorithm is usually time consuming and inefficient. To achieve a desired radiation pattern such as cosecant squared beam and contoured beam, different evolutionary algorithms such as genetic algorithm (GA), particle swarm optimization algorithm, and invasive weed optimization algorithm have been used to find the excitation of radiation elements. Adaptive genetic algorithm (AGA) optimizer is a robust, stochastic search method, modeled on the principles and concepts of natural selection and evolution. As an optimizer, the powerful heuristic of the AGA is effective for solving complex and related problems. An improved AGA is proposed, in allusion to the characteristics of optimizing designs of antenna arrays which have many parameters and complicated structures. This algorithm constructs an adjustble formula to produce the crossover rate and mutation rate based on a logistic curve equation. In the way of combining roulette wheel selection and elitist strategy, this algorithm searches for the optimal solution in the global space, and is compared with the classical GA; the improved AGA has a better performance in seeking the solution. Taking the mutual coupling between the elements into account, we design the X band extended cosecant squared beam micro-strip antenna arrays based on the improved AGA. Specifications of the antenna are as follows:a -3 dB beam width in height is from 0° to 12°, a -10 dB beam width in height is from 12° to 65°, and a total height coverage is 65°; a frequency band ranges from 8.5 to 9.8 GHz and its center frequency is 9.05 GHz. Simulation results show that the fitness increases from 0.07 to 0.09, and the quality of the synthesized radiation pattern has a great improvement, which verifies the superiority of the improved AGA proposed in this paper. In addition, the prospect of the designed antenna which has an extended cosecant squared beam is promising in air-surveillance radar systems, where the radiation pattern of the antenna will compensate for the free-space loss.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61171051), and the Scientific Research Project of Beijing Municipal Commission of Education and Beijing Natural Science Foundation, China (Grant No. KZ201310028032).
    [1]

    Foudazi A, Mallahzadeh A R 2012 IET Microw. Antennas Propag. 6 1583

    [2]

    Ares-Pena F J, Rodriguez-Gonzalez J A, Villanueva-Lopez E, Rengarajan S R 1999 IEEE Trans. Antennas Propag. 47 506

    [3]

    Kurup D G, Himdi M, Rydberg A 2003 IEEE Trans. Antennas Propag. 51 2210

    [4]

    Zaman F, Qureshi I M, Munir F, Khan Z U 2014 Chin. Phys. B 23 078402

    [5]

    Sharaqa A, Dib N 2013 IET Microw. Antennas Propag. 7 452

    [6]

    Xu J, Li Z L, Chen R S 2014 Int. J. RF and Microwave CAE 24 360

    [7]

    Pirhadi A, Rahmani M H, Mallahzadeh A 2014 IET Microw. Antennas Propag. 8 549

    [8]

    Dastranj A, Abiri H, Mallahzadeh A 2013 IEEE Trans. Antennas Propag. 61 3895

    [9]

    Zornoza J A, Leberer R, A. Encinar J, Menzel W 2006 IEEE Trans. Antennas Propag. 54 510

    [10]

    Johnson J M, Rahmat-Samii Y 1997 IEEE Antennas Propag. Mag. 39 7

    [11]

    Weile D S, Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343

    [12]

    Chang H W, Ma H, Zhang J Q, Zhang Z Y, Xu Z, Wang J F, Qu S B 2014 Acta Phys. Sin. 63 087804 (in Chinese) [常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波 2014 物理学报 63 087804]

    [13]

    Mohammed O A, ler G F 1997 IEEE Trans. Magn. 33 1931

    [14]

    Lee D, Lee S, Kim J W, Lee C G, Jung S Y 2011 IEEE Trans. Magn. 47 1230

    [15]

    Jolly L, Jabbar M A, Liu Q H 2005 IEEE Trans. Magn. 41 3928

    [16]

    Cho D H, Kim J K, Jung H K, Lee C G 2003 IEEE Trans. Magn. 39 1265

    [17]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182

    [18]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2013 Acta Phys. Sin. 62 168402 (in Chinese) [陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉 2013 物理学报 62 168402]

    [19]

    Zhong H L, Wu F G, Yao L N 2006 Acta Phys. Sin. 55 275 (in Chinese) [钟会林, 吴福根, 姚立宁 2006 物理学报 55 275]

    [20]

    Yan K K, Lu Y L 1997 IEEE Trans. Antennas Propag. 45 1117

    [21]

    Haupt R L 2008 IEEE Trans. Antennas Propag. 56 266

    [22]

    Son S H, Jeon S I, Kim C J, Hwang W 2010 IEEE Trans. Antennas Propag. 58 1527

    [23]

    Shin D H, Kim K B, Kim J G, Park S O 2014 IEEE Antennas Wirel. Propag. Lett. 13 738

    [24]

    Zhao Y, Xu X, Zhao Y, Chu X N 2014 Comput. Technol. Dev. 24 63 (in Chinese) [赵越, 徐鑫, 赵炎, 初雪宁 2014 计算机技术与发展 24 63]

  • [1]

    Foudazi A, Mallahzadeh A R 2012 IET Microw. Antennas Propag. 6 1583

    [2]

    Ares-Pena F J, Rodriguez-Gonzalez J A, Villanueva-Lopez E, Rengarajan S R 1999 IEEE Trans. Antennas Propag. 47 506

    [3]

    Kurup D G, Himdi M, Rydberg A 2003 IEEE Trans. Antennas Propag. 51 2210

    [4]

    Zaman F, Qureshi I M, Munir F, Khan Z U 2014 Chin. Phys. B 23 078402

    [5]

    Sharaqa A, Dib N 2013 IET Microw. Antennas Propag. 7 452

    [6]

    Xu J, Li Z L, Chen R S 2014 Int. J. RF and Microwave CAE 24 360

    [7]

    Pirhadi A, Rahmani M H, Mallahzadeh A 2014 IET Microw. Antennas Propag. 8 549

    [8]

    Dastranj A, Abiri H, Mallahzadeh A 2013 IEEE Trans. Antennas Propag. 61 3895

    [9]

    Zornoza J A, Leberer R, A. Encinar J, Menzel W 2006 IEEE Trans. Antennas Propag. 54 510

    [10]

    Johnson J M, Rahmat-Samii Y 1997 IEEE Antennas Propag. Mag. 39 7

    [11]

    Weile D S, Michielssen E 1997 IEEE Trans. Antennas Propag. 45 343

    [12]

    Chang H W, Ma H, Zhang J Q, Zhang Z Y, Xu Z, Wang J F, Qu S B 2014 Acta Phys. Sin. 63 087804 (in Chinese) [常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波 2014 物理学报 63 087804]

    [13]

    Mohammed O A, ler G F 1997 IEEE Trans. Magn. 33 1931

    [14]

    Lee D, Lee S, Kim J W, Lee C G, Jung S Y 2011 IEEE Trans. Magn. 47 1230

    [15]

    Jolly L, Jabbar M A, Liu Q H 2005 IEEE Trans. Magn. 41 3928

    [16]

    Cho D H, Kim J K, Jung H K, Lee C G 2003 IEEE Trans. Magn. 39 1265

    [17]

    Deb K, Pratap A, Agarwal S, Meyarivan T 2002 IEEE Trans. Evol. Comput. 6 182

    [18]

    Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J, Zhang D H 2013 Acta Phys. Sin. 62 168402 (in Chinese) [陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉 2013 物理学报 62 168402]

    [19]

    Zhong H L, Wu F G, Yao L N 2006 Acta Phys. Sin. 55 275 (in Chinese) [钟会林, 吴福根, 姚立宁 2006 物理学报 55 275]

    [20]

    Yan K K, Lu Y L 1997 IEEE Trans. Antennas Propag. 45 1117

    [21]

    Haupt R L 2008 IEEE Trans. Antennas Propag. 56 266

    [22]

    Son S H, Jeon S I, Kim C J, Hwang W 2010 IEEE Trans. Antennas Propag. 58 1527

    [23]

    Shin D H, Kim K B, Kim J G, Park S O 2014 IEEE Antennas Wirel. Propag. Lett. 13 738

    [24]

    Zhao Y, Xu X, Zhao Y, Chu X N 2014 Comput. Technol. Dev. 24 63 (in Chinese) [赵越, 徐鑫, 赵炎, 初雪宁 2014 计算机技术与发展 24 63]

  • [1] Wang Shen-Yun, Zheng Hao-Yu, Li Yang. Antenna with adaptively focusing on near-field target. Acta Physica Sinica, 2020, 69(21): 218402. doi: 10.7498/aps.69.20201525
    [2] Lan Jun-Xiang, Cao Xiang-Yu, Gao Jun, Han Jiang-Feng, Liu Tao, Cong Li-Li, Wang Si-Ming. Novel design of microstrip antenna array with low scattering performance. Acta Physica Sinica, 2019, 68(3): 034101. doi: 10.7498/aps.68.20181708
    [3] Mei Ying, Tan Guan-Zheng, Liu Zhen-Tao, Wu He. Chaotic time series prediction based on brain emotional learning model and self-adaptive genetic algorithm. Acta Physica Sinica, 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [4] Fan Zhan, Liang Guo-Long, Wang Jin-Jin, Wang Yan, Tao Kai. An efficient adaptive beam-space transformation technique and its application in array processing. Acta Physica Sinica, 2015, 64(9): 094304. doi: 10.7498/aps.64.094304
    [5] Guo Ye-Cai, Zhang Ning, Wu Li-Fu, Sun Xin-Yu. Adaptive weighted constrained least squares algorithm based microphone array robustness beamforming algorithm. Acta Physica Sinica, 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [6] Huang Fang-Yi, Shi Jia-Ming, Yuan Zhong-Cai, Wang Jia-Chun, Xu Bo, Chen Zong-Sheng, Wang Chao. Theoretical and experimental study of plasma directional antenna array. Acta Physica Sinica, 2013, 62(15): 155201. doi: 10.7498/aps.62.155201
    [7] Chen Wei-Dong, Liu Yao-Long, Zhu Qi-Guang, Chen Ying. Fuzzy adaptive extended Kalman filter SLAM algorithm based on the improved wild geese PSO algorithm. Acta Physica Sinica, 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [8] Liu Jun-Qun. Analysis of the near-field-far-field pattern of tilted planar antenna arrays. Acta Physica Sinica, 2012, 61(23): 238401. doi: 10.7498/aps.61.238401
    [9] Zhao Xiao-Feng, Huang Si-Xun. Remote sensing of atmospheric refractivity from field measurements of vertical receiver array. Acta Physica Sinica, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [10] Wang Jian-Bo, Lu Jun. Double screen frequency selective surface structure optimized by genetic algorithm. Acta Physica Sinica, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [11] Li Jian-Long, Lü Bai-Da. Optimized design of phase plates for shaping partially coherent beams based on the adaptive genetic algorithm. Acta Physica Sinica, 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [12] Gong Chun-Juan, Hu Xiong-Wei. Design of triangular lattice photonic crystals using genetic algorithms. Acta Physica Sinica, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [13] Zhang Su_Ling, Chen Hong_Shan, Song Yan, Yin Yue_Hong. Global geometry optimization of water clusters (H2O)n≤14)using a single-parent genetic algorithm. Acta Physica Sinica, 2007, 56(5): 2553-2558. doi: 10.7498/aps.56.2553
    [14] Zhao Zhi-Jin, Zheng Shi-Lian, Shang Jun-Na, Kong Xian-Zheng. A study of cognitive radio decision engine based on quantum genetic algorithm. Acta Physica Sinica, 2007, 56(11): 6760-6766. doi: 10.7498/aps.56.6760
    [15] Zhong Hui-Lin, Wu Fu-Gen, Yao Li-Ning. Application of genetic algorithm in optimization of band gap of two-dimensional phononic crystals. Acta Physica Sinica, 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [16] Wang Dong-Feng. Genetic algorithm optimization based proportional-integral-derivative controller for unified chaotic system. Acta Physica Sinica, 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [17] Wu Zhong-Qiang, Ao Dun, Liu Kun. Fuzzy control of a chaotic system based on genetic algorithm. Acta Physica Sinica, 2004, 53(1): 21-24. doi: 10.7498/aps.53.21
    [18] ZHANG JING-JUAN, JI YANG, YAO DE-CHENG, CHEN JUN-BEN. APLLICATION OF GENETIC ALGORITHM TO LASER BEAM RESHAPING. Acta Physica Sinica, 1996, 45(5): 789-795. doi: 10.7498/aps.45.789
    [19] JEN LANG. A GENERAL DISTRIBUTION FUNCTION OF NULLS ON THE UNIT CIRCLE OF LINEAR ANTENNA ARRAYS. Acta Physica Sinica, 1962, 18(9): 449-466. doi: 10.7498/aps.18.449
    [20] L. JEN, M. Y. LOO. THE SUPPRESSION OF SIDE-LOBES OF LINEAR ARRAYS. Acta Physica Sinica, 1961, 17(12): 592-599. doi: 10.7498/aps.17.592
Metrics
  • Abstract views:  6034
  • PDF Downloads:  260
  • Cited By: 0
Publishing process
  • Received Date:  15 November 2014
  • Accepted Date:  26 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回