Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatial correlation experimental analysis of atmospheric optical turbulence in the near ground layer

Wang Qian Mei Hai-Ping Qian Xian-Mei Rao Rui-Zhong

Citation:

Spatial correlation experimental analysis of atmospheric optical turbulence in the near ground layer

Wang Qian, Mei Hai-Ping, Qian Xian-Mei, Rao Rui-Zhong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Atmospheric optical turbulence means refractive index random fluctuation of atmosphere. In this article, according to the concept of correlation function, the measurement principle, measurement schemes, and data processing method of spatial correlation function are given based on a high-quality fiber optical turbulence sensing array. Determining the statistical time and the calculation principle of the spatial correlation is the main point of current research. Emphasis is put on demonstrating the kinds of structural forms and analyzing the impact elements of spatial correlation function in turbulence as clear as possible. Using the sensing array, experimental measurement is promoted in the near ground layer and many forms of correlation functions are revealed. Results show that there are two main structural forms of the spatial correlation function:the first one shows an isotropy-model form, which tends to decrease with the increase of spatial displacement, and then tends to zero after outer scale, the coincidence rate is about 58.7%. The other one tends to oscillate around zero, and the coincidence rate is about 37.9%. By analyzing the probability and impact elements, it is not difficult to know that the spatial correlation of an optical turbulence mainly depends on the intensity and development degree of the optical turbulence; and the coherent structure is an important factor of oscillation in the correlation functions. On the one hand, the value of correlation coefficient is mainly determined by the intensity of the optical turbulence; and on a certain scale, the stronger the turbulence, the bigger the value of correlation coefficient becomes. On the other hand, the variation tendency of correlation function is not only determined by the intensity of turbulence, but also by the development degree of the optical turbulence. When the atmosphere is in advection or anisotropy, its spatial correlation coefficient will oscillate around zero and be unrelated to the spatial displacement. The spatial correlation function obtained by the sensor array set is not only the foundation of analyzing the spatial structure, but also the beginning of giving non-Kolmogorov model of turbulence.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41205010, 61107066).
    [1]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) p155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京:科学出版社)第155-159页]

    [2]

    Cui L Y, Xue B D, Cao X G, Zhou F G 2014 J. Opt. Soc. Am. A 31 829

    [3]

    Reinhardt C N, Tsintikidis D, Hammel S, Kuga Y, Ritcey J A, Ishimaru A 2012 Opt. Eng. 51 031205

    [4]

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z B 2002 High Power Laser and Particle Beams 14233 (in Chinese) [吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14233]

    [5]

    Wu X Q, Huang Y B, Mei H P, Shao S Y, Huang H H, Qian X M, Cui C L 2014 Acta Opt. Sin. 34 0601001 (in Chinese) [吴晓庆, 黄印博, 梅海平, 邵士勇, 黄宏华, 钱仙妹, 崔朝龙 2014 光学学报 34 0601001]

    [6]

    Guo Y M, Ma X Y, Rao C H 2013 Acta Phys. Sin. 62 13420701 (in Chinese) [郭友明, 马晓燠, 饶长辉 2013 物理学报 62 13420701]

    [7]

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 10421701 (in Chinese) [蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 10421701]

    [8]

    Shraiman B I, Siggia E D 2000 Nature 405 639

    [9]

    Jiang N 1999 Mechanics in Engineering 21 75 (in Chinese) [姜楠 1999 力学与实践 21 75]

    [10]

    Mei H P 2007 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [梅海平 2006 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [11]

    Xiao S M 2014 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [肖树妹 2014 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [12]

    Kolmogorov A N 1991 Proc. R. Soc. Lond. A 434 9

    [13]

    Hao L, Mei H P, Qian X M, Zhu W Y, Rao R Z 2008 Acta Photonica Sin. 37 2292 (in Chinese) [郝磊, 梅海平, 钱仙妹, 朱文越, 饶瑞中 2008 光子学报 37 2292]

    [14]

    Xiao S M, Mei H P, Qian X M, Rao R Z 2011 Acta Opt. Sin. 31 0201002 (in Chinese) [肖树妹, 梅海平, 钱仙妹, 饶瑞中 2011 光学学报 31 0201002]

    [15]

    Lukin V P 2005 Proceedings of SPIE Bellingham, WA, September 21-22, 2005p598101

    [16]

    She Z S, Jackson E, Orszag S A 1990 Nature 344 226

    [17]

    Nosov V V, Grigoriev V M, Kovadlo P G, Lukin V P, Nosov E V, Torgaev A V 2008 Proceedings of SPIE Krasnoyarsk, Russian, June 22, p729609

    [18]

    Simmons L F G, Salter C, Taylor G I 1938 Proc. Roy. Soc. Lond. A 165 73

    [19]

    Karman T V 1937 Physics 23 98

    [20]

    Townsend A A 1947 Math. Proc. Cambridge. 43 560

    [21]

    Renhorn I G E, Svensson T, Boreman G D 2013 Opt. Eng. 52 026001

    [22]

    Kulikov V A, Andreeva M S, Koryabin A V, Shmalhausen V I 2012 Appl. Optics 51 8505

    [23]

    Consortini A, Innocenti C, Paoli G 2002 Opt. Commun. 214 9

    [24]

    Voistsekhovich V V, Cuevas S 1995 J. Opt. Soc. Am. A 12 2523

    [25]

    Osman K T, Horbury T S 2007 Astrophys. J 654 103

    [26]

    Rao C H, Jiang W H, Ling N 2000 Acta Opt. Sin. 20 1323 (in Chinese) [饶长辉, 姜文汉, 凌宁 2000光学学报 20 1323]

  • [1]

    Rao R Z 2012 Modern Atmospheric Optics (Beijing:Science Press) p155-159 (in Chinese) [饶瑞中 2012 现代大气光学(北京:科学出版社)第155-159页]

    [2]

    Cui L Y, Xue B D, Cao X G, Zhou F G 2014 J. Opt. Soc. Am. A 31 829

    [3]

    Reinhardt C N, Tsintikidis D, Hammel S, Kuga Y, Ritcey J A, Ishimaru A 2012 Opt. Eng. 51 031205

    [4]

    Wu X Q, Wang Y J, Zeng Z Y, Gong Z B 2002 High Power Laser and Particle Beams 14233 (in Chinese) [吴晓庆, 王英俭, 曾宗泳, 龚知本 2002 强激光与粒子束 14233]

    [5]

    Wu X Q, Huang Y B, Mei H P, Shao S Y, Huang H H, Qian X M, Cui C L 2014 Acta Opt. Sin. 34 0601001 (in Chinese) [吴晓庆, 黄印博, 梅海平, 邵士勇, 黄宏华, 钱仙妹, 崔朝龙 2014 光学学报 34 0601001]

    [6]

    Guo Y M, Ma X Y, Rao C H 2013 Acta Phys. Sin. 62 13420701 (in Chinese) [郭友明, 马晓燠, 饶长辉 2013 物理学报 62 13420701]

    [7]

    Cai D M, Wang K, Jia P, Wang D, Liu J X 2014 Acta Phys. Sin. 63 10421701 (in Chinese) [蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞 2014 物理学报 63 10421701]

    [8]

    Shraiman B I, Siggia E D 2000 Nature 405 639

    [9]

    Jiang N 1999 Mechanics in Engineering 21 75 (in Chinese) [姜楠 1999 力学与实践 21 75]

    [10]

    Mei H P 2007 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [梅海平 2006 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [11]

    Xiao S M 2014 Ph. D. Dissertation (Hefei:Hefei Institutes of Physical Science, the Chinese Academy of Sciences) (in Chinese) [肖树妹 2014 博士学位论文(合肥:中国科学院合肥物质科学研究院)]

    [12]

    Kolmogorov A N 1991 Proc. R. Soc. Lond. A 434 9

    [13]

    Hao L, Mei H P, Qian X M, Zhu W Y, Rao R Z 2008 Acta Photonica Sin. 37 2292 (in Chinese) [郝磊, 梅海平, 钱仙妹, 朱文越, 饶瑞中 2008 光子学报 37 2292]

    [14]

    Xiao S M, Mei H P, Qian X M, Rao R Z 2011 Acta Opt. Sin. 31 0201002 (in Chinese) [肖树妹, 梅海平, 钱仙妹, 饶瑞中 2011 光学学报 31 0201002]

    [15]

    Lukin V P 2005 Proceedings of SPIE Bellingham, WA, September 21-22, 2005p598101

    [16]

    She Z S, Jackson E, Orszag S A 1990 Nature 344 226

    [17]

    Nosov V V, Grigoriev V M, Kovadlo P G, Lukin V P, Nosov E V, Torgaev A V 2008 Proceedings of SPIE Krasnoyarsk, Russian, June 22, p729609

    [18]

    Simmons L F G, Salter C, Taylor G I 1938 Proc. Roy. Soc. Lond. A 165 73

    [19]

    Karman T V 1937 Physics 23 98

    [20]

    Townsend A A 1947 Math. Proc. Cambridge. 43 560

    [21]

    Renhorn I G E, Svensson T, Boreman G D 2013 Opt. Eng. 52 026001

    [22]

    Kulikov V A, Andreeva M S, Koryabin A V, Shmalhausen V I 2012 Appl. Optics 51 8505

    [23]

    Consortini A, Innocenti C, Paoli G 2002 Opt. Commun. 214 9

    [24]

    Voistsekhovich V V, Cuevas S 1995 J. Opt. Soc. Am. A 12 2523

    [25]

    Osman K T, Horbury T S 2007 Astrophys. J 654 103

    [26]

    Rao C H, Jiang W H, Ling N 2000 Acta Opt. Sin. 20 1323 (in Chinese) [饶长辉, 姜文汉, 凌宁 2000光学学报 20 1323]

  • [1] Liu Yu-Tao, Xu Miao, Fu Xing-Hu, Fu Guang-Wei. Research on the Impact of Atmospheric Turbulence on Coherent Detection Performance of Space Coherent Optical Communication. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231885
    [2] Wang Ming-Jun, Xi Jian-Xia, Wang Wan-Rou, Li Yong-Jun, Zhang Jia-Lin. Analysis of influence of acoustic wave disturbance on internal and external scale and refractive index power spectrum function of atmospheric turbulence. Acta Physica Sinica, 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [3] Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian. Study of ${\boldsymbol C_{\boldsymbol n}^{\boldsymbol 2}}$ profile model by atmospheric optical turbulence model. Acta Physica Sinica, 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [4] Wu Xiao-Qing, Yang Qi-Ke, Huang Hong-Hua, Qing Chun, Hu Xiao-Dan, Wang Ying-Jian. Analysis of atmospheric optical turbulence model— methods and progress. Acta Physica Sinica, 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [5] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [6] Li Yan-Ling, Mei Hai-Ping, Ren Yi-Chong, Zhang Jun-Xin, Tao Zhi-Wei, Abdukirim Azezigul, Liu Shi-Wei. Simulation of spatial coherence of laser echo light field from random rough surface in turbulent atmosphere. Acta Physica Sinica, 2022, 71(14): 140201. doi: 10.7498/aps.71.20212420
    [7] Fang Yun-Tuan, Wang Yu-Ya, Xia Jing. Large-range electric field sensor based on parity-time symmetry cavity structure. Acta Physica Sinica, 2019, 68(19): 194201. doi: 10.7498/aps.68.20190784
    [8] Wu Xiao-Qing, Tian Qi-Guo, Jin Xin-Miao, Jiang Peng, Qing Chun, Cai Jun, Zhou Hong-Yan. Estimating optical turbulence of atmospheric surface layer at Antarctic Taishan station from meteorological data. Acta Physica Sinica, 2017, 66(3): 039201. doi: 10.7498/aps.66.039201
    [9] Wang Qian, Mei Hai-Ping, Li Yu-Jian, Shao Shi-Yong, Li Xue-Bin, Rao Rui-Zhong. Experimental investigation of open sea atmospheric optical turbulence. Acta Physica Sinica, 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [10] Wang Qian, Mei Hai-Ping, Qian Xian-Mei, Rao Rui-Zhong. Experimental investigation of the outer scale in atmospheric optical turbulence near the ground. Acta Physica Sinica, 2015, 64(22): 224216. doi: 10.7498/aps.64.224216
    [11] Feng Li-Hang, Zeng Jie, Liang Da-Kai, Zhang Wei-Gong. Development of fiber-optic surface plasmon resonance sensor based on tapered structure probe. Acta Physica Sinica, 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] Li Xiao-Qing, Ji Xiao-Ling, Zhu Jian-Hua. Higher-order intensity moments of optical beams in atmospheric turbulence. Acta Physica Sinica, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [13] Huang Yong-Ping, Zhao Guang-Pu, Xiao Xi, Wang Fan-Hou. Effective radius of curvature of spatially partially coherent beams propagating through non-Kolmogorov turbulence. Acta Physica Sinica, 2012, 61(14): 144202. doi: 10.7498/aps.61.144202
    [14] Liu Yang-Yang, Zhang Wen-Xi. Simulation for Space target interference imaging system distorted by atmospheric turbulence. Acta Physica Sinica, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [15] Wang Hua, Wang Xiang-Zhao, Zeng Ai-Jun, Yang Kun. Effect of atmospheric turbulence on the spatial coherence of quasi-monochromatic Gaussian Schell-model beams propagating in the slant path. Acta Physica Sinica, 2008, 57(1): 634-638. doi: 10.7498/aps.57.634
    [16] Chen Xiao-Wen, Tang Ming-Yue, Ji Xiao-Ling. The influence of atmospheric turbulence on the spatial correlation property of partially coherent Hermite-Gaussian beams. Acta Physica Sinica, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [17] Zhou Xiao-Jun, Du Dong, Gong Jun-Jie. Study on spatial resolution of polarized-modes coupling distributed fiber optic sensor. Acta Physica Sinica, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [18] Ji Xiao-Ling, Xiao Xi, Lü Bai-Da. Effect of atmospheric turbulence on the propagation properties of spatially partially coherent polychromatic light. Acta Physica Sinica, 2004, 53(11): 3996-4001. doi: 10.7498/aps.53.3996
    [19] Dong Li-Fang, Li Xue-Chen, Yin Zeng-Qian, Wang Long. . Acta Physica Sinica, 2002, 51(10): 2296-2301. doi: 10.7498/aps.51.2296
    [20] WANG XIAO-CHUN, ZHOU DING-WEN, ZHANG YI-MO. REAL-TIME COMPENSATION OF ATMOSPHERIC TURBULEN- CE BY NONLINEAR OPTICAL PHASE CONJUAGTION. Acta Physica Sinica, 1989, 38(3): 466-470. doi: 10.7498/aps.38.466
Metrics
  • Abstract views:  4853
  • PDF Downloads:  606
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2014
  • Accepted Date:  27 November 2014
  • Published Online:  05 June 2015

/

返回文章
返回