Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Flux controllable pumping of water molecules in a double-walled carbon nanotube

Cao Ping Luo Cheng-Lin Chen Gui-Hu Han Dian-Rong Zhu Xing-Feng Dai Ya-Fei

Citation:

Flux controllable pumping of water molecules in a double-walled carbon nanotube

Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A water pumping system model has been designed based on the double-walled carbon nanotube. In this system, the inner tube is fixed as the water channel, while the exterior one can move, similar to the piston motion along the axial direction, to create a pumping force. Molecular dynamics simulations confirm that both the water flux and the water dipole orientation are sensitive to the velocity of motions of the outer tube so that a controllable unidirectional water flow can be achieved in this system by varying the velocity. Its pumping ability comes mainly from the carbon-water van der Waals driving forces of the exterior tube. The piston motion of the outer tube changes the position of the vdW balance point, which not only leads to the increase of vdW force on the water molecules already residing in the inner tube, but also enlarges their accelerated distance. Meanwhile, the orientation of water molecules inside the inner tube is strongly coupled to the water flux, the probability of +dipole states attains unity at v = 0.05 Å/ps, where the water flux reaches its maximum value (2.02 ns-1). Compared to the pump which is controlled by uniform electric field, the transmission efficiency of our mechanical pump is higher. This design may open a new way for water pumping in the field of nanodevices.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203097), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant no. 14KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
    [1]

    de Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sanchez J C, Elias A L, Mancilla R, Arrellin G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [4]

    Zhu F, Schulten K 2003 Biophys. J. 85 236

    [5]

    Kalra A, Garde S, Hummer G 2003 Proc.Natl. Acad. Sci. U.S.A. 100 10175

    [6]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [7]

    Shen L, Xu Z, Zhou Z W, Hu G H 2014 Chin. Phys. B 23 118201

    [8]

    Kral P, Tomanek D 1999 Phys. Rev. Lett. 82 5373

    [9]

    Insepov Z, Wolf D, Hassanein A 2006 Nano Lett. 6 1893

    [10]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [11]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nature Nanotechnology 2 709

    [12]

    Zuo G C, Shen R, Ma S J, Guo W L 2010 ACS Nano 4 205

    [13]

    Su J Y, Guo H X 2011 ACS Nano 5 351

    [14]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B. 115 13275

    [15]

    Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117

    [16]

    Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B 2005 Environ. Sci. Technol. 39 1378

    [17]

    Chen X, Kis A, Zettl A, Bertozzi C R 2007 Proc. Natl. Acad. Sci. U.S.A. 104 8218

    [18]

    Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K 2007 Nano Today 2 38

    [19]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [20]

    Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley H M, Silva S R P, McFadden J 2010 ACS Nano 4 2615

    [21]

    Prato M, Kostarelos K, Bianco A 2008 Acc. Chem. Res. 41 60

    [22]

    Wu Z H, Wang W L, Liao K J, Wang Y T, Hu C G, Fu G Z, Wan B Y, Yu P 2004 Acta Phys. Sin. 53 3462 (in Chinese) [吴子华, 王万录, 廖克俊, 王永田, 胡陈果, 付光宗, 万步勇, 余鹏 2004 物理学报 53 3462]

    [23]

    Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 物理学报 58 4536]

    [24]

    Zhang K W, Li Z Q, Wu J, Peng X Y, Tan X J, Sun L Z, Zhang J X 2012 Chin. Phys. B 21 106102

    [25]

    Cumings J, Zettl A 2000 Science 289 602

    [26]

    Legoas S B, Coluci V R, Brage S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504

    [27]

    Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 J. Comput. Chem. 26 1781

    [28]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [29]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [30]

    Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188

    [31]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166

    [32]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc.Natl. Acad. Sci. U.S.A. 104 3687

    [33]

    Zou J, Ji B, Feng X Q, Gao H 2006 Small 2 1348

    [34]

    Heymann J B, Engel A 1999 News. Physiol. Sci 14 187

    [35]

    Walz T, Smith B L, Zeidel M L, Engel A, Agre P 1994 J. Biol. Chem. 269 1583

    [36]

    Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P 2009 Phys. Chem. Chem. Phys. 11 9898

    [37]

    Joseph S, Aluru N R 2008 Nano Lett. 8 452

    [38]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

  • [1]

    de Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sanchez J C, Elias A L, Mancilla R, Arrellin G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [4]

    Zhu F, Schulten K 2003 Biophys. J. 85 236

    [5]

    Kalra A, Garde S, Hummer G 2003 Proc.Natl. Acad. Sci. U.S.A. 100 10175

    [6]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [7]

    Shen L, Xu Z, Zhou Z W, Hu G H 2014 Chin. Phys. B 23 118201

    [8]

    Kral P, Tomanek D 1999 Phys. Rev. Lett. 82 5373

    [9]

    Insepov Z, Wolf D, Hassanein A 2006 Nano Lett. 6 1893

    [10]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [11]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nature Nanotechnology 2 709

    [12]

    Zuo G C, Shen R, Ma S J, Guo W L 2010 ACS Nano 4 205

    [13]

    Su J Y, Guo H X 2011 ACS Nano 5 351

    [14]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B. 115 13275

    [15]

    Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117

    [16]

    Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B 2005 Environ. Sci. Technol. 39 1378

    [17]

    Chen X, Kis A, Zettl A, Bertozzi C R 2007 Proc. Natl. Acad. Sci. U.S.A. 104 8218

    [18]

    Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K 2007 Nano Today 2 38

    [19]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [20]

    Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley H M, Silva S R P, McFadden J 2010 ACS Nano 4 2615

    [21]

    Prato M, Kostarelos K, Bianco A 2008 Acc. Chem. Res. 41 60

    [22]

    Wu Z H, Wang W L, Liao K J, Wang Y T, Hu C G, Fu G Z, Wan B Y, Yu P 2004 Acta Phys. Sin. 53 3462 (in Chinese) [吴子华, 王万录, 廖克俊, 王永田, 胡陈果, 付光宗, 万步勇, 余鹏 2004 物理学报 53 3462]

    [23]

    Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 物理学报 58 4536]

    [24]

    Zhang K W, Li Z Q, Wu J, Peng X Y, Tan X J, Sun L Z, Zhang J X 2012 Chin. Phys. B 21 106102

    [25]

    Cumings J, Zettl A 2000 Science 289 602

    [26]

    Legoas S B, Coluci V R, Brage S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504

    [27]

    Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 J. Comput. Chem. 26 1781

    [28]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [29]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [30]

    Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188

    [31]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166

    [32]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc.Natl. Acad. Sci. U.S.A. 104 3687

    [33]

    Zou J, Ji B, Feng X Q, Gao H 2006 Small 2 1348

    [34]

    Heymann J B, Engel A 1999 News. Physiol. Sci 14 187

    [35]

    Walz T, Smith B L, Zeidel M L, Engel A, Agre P 1994 J. Biol. Chem. 269 1583

    [36]

    Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P 2009 Phys. Chem. Chem. Phys. 11 9898

    [37]

    Joseph S, Aluru N R 2008 Nano Lett. 8 452

    [38]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

  • [1] Qin Cheng-Long, Luo Xiang-Yan, Xie Quan, Wu Qiao-Dan. Molecular dynamics study of thermal conductivity of carbon nanotubes and silicon carbide nanotubes. Acta Physica Sinica, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] Lin Yi-Ni, Ma Li, Yang Quan, Geng Song-Chao, Ye Mao-Sheng, Chen Tao, Sun Li-Ning. Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2022, 71(2): 027301. doi: 10.7498/aps.71.20211370
    [3] Electron transport properties of carbon nanotubes with radial compression deformation. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211370
    [4] Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning. Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface. Acta Physica Sinica, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [5] Li Yang, Song Yong-Shun, Li Ming, Zhou Xin. Simulation studies on the diffusion of water solitons in carbon nanotube. Acta Physica Sinica, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [6] Zeng Yong-Hui, Jiang Wu-Gui, Qin Qing-Hua. Influence of helical rise on the self-excited oscillation behavior of zigzag @ zigzag double-wall carbon nanotubes. Acta Physica Sinica, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [7] Han Dian-Rong, Wang Lu, Luo Cheng-Lin, Zhu Xing-Feng, Dai Ya-Fei. Torsional mechanical properties of (n, n)-(2n, 0) carbon nanotubes heterojunction. Acta Physica Sinica, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [8] Yang Cheng-Bing, Xie Hui, Liu Chao. Molecular dynamics simulation of average velocity of lithium iron across the end of carbon nanotube. Acta Physica Sinica, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] Jiao Xue-Jing, Ouyang Fang-Ping, Peng Sheng-Lin, Li Jian-Ping, Duan Ji-An, Hu You-Wang. Formation of all carbon heterojunction: through the docking of carbon nanotubes. Acta Physica Sinica, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] Zhang Zhong-Qiang, Ding Jian-Ning, Liu Zhen, Xue Yi-Bin, Cheng Guang-Gui, Ling Zhi-Yong. Analysis of Interfacial Mechanical Properties of Carbon NanotubePolymer Composite. Acta Physica Sinica, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [11] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] Chen Jun, Shi Lin, Wang Nan, Bi Sheng-Shan. The analysis of transport properties stability in molecular dynamics simulations. Acta Physica Sinica, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [13] Ouyang Fang-Ping, Xu Hui, Lin Feng. The electronic structure and transport properties ofgraphene nanoribbons with divacancies defects. Acta Physica Sinica, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [14] Meng Li-Jun, Xiao Hua-Ping, Tang Chao, Zhang Kai-Wang, Zhong Jian-Xin. Formation and thermal stability of compound stucture of carbon nanotube and silicon nanowire. Acta Physica Sinica, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [16] Ouyang Fang-Ping, Wang Huan-You, Li Ming-Jun, Xiao Jin, Xu Hui. Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects. Acta Physica Sinica, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [17] Zhang Zhong-Qiang, Zhang Hong-Wu, Wang Lei, Zheng Yong-Gang, Wang Jin-Bao. Pressure control model for transport of liquid mercury in carbon nanotubes. Acta Physica Sinica, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [18] Xin Hao, Han Qiang, Yao Xiao-Hu. Influences of atom vacancies on buckling properties of armchair single-walled carbon nanotubes shown by molecular dynamics simulation. Acta Physica Sinica, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [19] Bao Wen-Xing, Zhu Chang-Chun. Study of thermal conduction of carbon nanotube by molecular dynamics. Acta Physica Sinica, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] Bao Wen-Xing, Zhu Chang-Chun, Cui Wan-Zhao. Study of structure optimization of carbon nanotubes using hybrid genetic algorithm based on clonal selection principle. Acta Physica Sinica, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
Metrics
  • Abstract views:  5169
  • PDF Downloads:  182
  • Cited By: 0
Publishing process
  • Received Date:  19 November 2014
  • Accepted Date:  25 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回