Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of temperature field and different walls on the wetting angle of molten silicon

Xu Duo Ding Jian-Ning Yuan Ning-Yi Zhang Zhong-Qiang Chen Guang-Gui Guo Li-Qiang Ling Zhi-Yong

Citation:

Effect of temperature field and different walls on the wetting angle of molten silicon

Xu Duo, Ding Jian-Ning, Yuan Ning-Yi, Zhang Zhong-Qiang, Chen Guang-Gui, Guo Li-Qiang, Ling Zhi-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A capillary model is developed for calculating the wetting angle of molten silicon on different walls by using the microfluidic two-phase flow level set method and studying the characteristics of the rising process. A mathematical model formulation rigorously accounts for the mass and momentum conservation by using the improved Navier-Stokes equation and considering the Marangoni effect. Compared with the experimental data, the change of the wetting angle on the chemical vapor deposition (CVD) diamond wall indicates the grids independence and the validity of the numerical algorithm. We also discuss the influence of surface tension, and Marangoni stress induced by the gradient of surface tension coefficient, and wall adhesion to the change of wetting angle for three different walls, which include SiC wall, graphite wall, and CVD diamond wall, at different temperatures (1683-1873 K). Result shows that at the same temperature, the thermal-capillary effects that induce the molten silicon to undulation are raised. The wetting angle is reduced after first being increased and finally stabilized. At the initial stage, the fluctuation of the liquid-air interface is volatile due to the large changes of the liquid-air and the wall-air surface tensions, and subsequently, the fluctuation tends to be stable while the wetting angle is close to a fixed value. It is also found that with the graphite wall, these changes are more likely to be stable. This research provides a theoretical guide to obtain a stable growth environment for silicon belt fabricated from the molten silicon.
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51335002), the National Natural Science Foundation of China (Grant No. 11472117), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
    [1]

    Qian J, Zerda T W, He D, Daemen L, Zhao Y 2003 Journal of Materials Research 18 1173

    [2]

    Ekimov E A, Gavriliuk A G, Palosz B, GierlotkaS, Dluzewski P, Tatianin E, Kluev Y, Naletov A M, Presz A 2000 Applied Physics Letters 77 954

    [3]

    Xu S H, Zhou H W, Wang C X, Wang L W, Sun Z W 2013 Acta Phys. Sin. 62 134702 (in Chinese) [徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟 2013 物理学报 62 134702]

    [4]

    Yamamoto Y, Tokieda K, Wakimoto T, Ito T, Katoh K 2014 International Journal of Multiphase Flow 59 106

    [5]

    Li Y Q, Liu L, Zhang C H, Duan L, Kang Q 2013 Acta Phys. Sin. 62 024701 (in Chinese) [李永强, 刘玲, 张晨辉, 段俐, 康琦 2013 物理学报 62 024701]

    [6]

    Messmer B, Lemee T, Ikebukuro K, Ueno I, Narayanan R 2014 International Journal of Heat and Mass Transfer 78 1060

    [7]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 Journal of Crystal Growth 355 129

    [8]

    Sasaki H, Tokizaki E, Huang X M 1995 Japanese journal of applied physics 34 3432

    [9]

    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 FC23

    [10]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing:Higher Education Press) pp267-269 (in Chinese) [朗道, 栗夫席兹著(李植译) 2013 流体动力学(第五版)(北京:高等教育出版社)第267-269页]

    [11]

    Peng L, Li Y R, Zeng D L 2004 JournaI of Chongging University 27 60 (in Chinese) [彭岚, 李友荣, 曾丹苓 2004 重庆大学学报:自然科学版 27 60]

    [12]

    Peng L, Zhang W, Li X R, Meng H Y 2011 Journal of Synthetic Crystals 40 556 (in Chinese) [彭岚, 张伟, 李友荣, 孟海泳 2011 人工晶体学报 40 556]

    [13]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 International Journal of Heat and Mass Transfer 53 1801

    [14]

    Mlungwane K, Sigalas I, Herrmann M, Rodríguez M 2009 Ceramics International 35 2435

    [15]

    Li Y Q, Liu L 2014 Acta Phys. Sin. 63 214704 (in Chinese) [李永强, 刘玲 2014 物理学报 63 214704]

    [16]

    Hitoshi S, Eiji T, Kazutaka T, Shigeyuki K 1994 Jpn. J. Appl. Phys. 33 6078

    [17]

    Huang X M 1997 Physics 26 37 (in Chinese) [黄新明1997 物理 26 37]

    [18]

    Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford:Oxford University Press) p86

    [19]

    Li Y R, Deng N B, Wu S Y, Peng L, Li M W 2005 Chinese Journal of Materials Research 19 395 (in Chinese) [李友荣, 邓努波, 吴双应, 彭岚, 李明伟 2005 材料研究学报 19 395]

    [20]

    Son G H 2014 International Communications in Heat and Mass Transfer 58 156

    [21]

    Daggolu P 2013 Ph. D. Dissertation (Minnesota:University of Minnesota)

  • [1]

    Qian J, Zerda T W, He D, Daemen L, Zhao Y 2003 Journal of Materials Research 18 1173

    [2]

    Ekimov E A, Gavriliuk A G, Palosz B, GierlotkaS, Dluzewski P, Tatianin E, Kluev Y, Naletov A M, Presz A 2000 Applied Physics Letters 77 954

    [3]

    Xu S H, Zhou H W, Wang C X, Wang L W, Sun Z W 2013 Acta Phys. Sin. 62 134702 (in Chinese) [徐升华, 周宏伟, 王彩霞, 王林伟, 孙祉伟 2013 物理学报 62 134702]

    [4]

    Yamamoto Y, Tokieda K, Wakimoto T, Ito T, Katoh K 2014 International Journal of Multiphase Flow 59 106

    [5]

    Li Y Q, Liu L, Zhang C H, Duan L, Kang Q 2013 Acta Phys. Sin. 62 024701 (in Chinese) [李永强, 刘玲, 张晨辉, 段俐, 康琦 2013 物理学报 62 024701]

    [6]

    Messmer B, Lemee T, Ikebukuro K, Ueno I, Narayanan R 2014 International Journal of Heat and Mass Transfer 78 1060

    [7]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 Journal of Crystal Growth 355 129

    [8]

    Sasaki H, Tokizaki E, Huang X M 1995 Japanese journal of applied physics 34 3432

    [9]

    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R, Horinek D 2008 Biointerphases 3 FC23

    [10]

    Landau L D, Lifshitz E M (translated by Li Z) 2013 Fluid Mechanics (Beijing:Higher Education Press) pp267-269 (in Chinese) [朗道, 栗夫席兹著(李植译) 2013 流体动力学(第五版)(北京:高等教育出版社)第267-269页]

    [11]

    Peng L, Li Y R, Zeng D L 2004 JournaI of Chongging University 27 60 (in Chinese) [彭岚, 李友荣, 曾丹苓 2004 重庆大学学报:自然科学版 27 60]

    [12]

    Peng L, Zhang W, Li X R, Meng H Y 2011 Journal of Synthetic Crystals 40 556 (in Chinese) [彭岚, 张伟, 李友荣, 孟海泳 2011 人工晶体学报 40 556]

    [13]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 International Journal of Heat and Mass Transfer 53 1801

    [14]

    Mlungwane K, Sigalas I, Herrmann M, Rodríguez M 2009 Ceramics International 35 2435

    [15]

    Li Y Q, Liu L 2014 Acta Phys. Sin. 63 214704 (in Chinese) [李永强, 刘玲 2014 物理学报 63 214704]

    [16]

    Hitoshi S, Eiji T, Kazutaka T, Shigeyuki K 1994 Jpn. J. Appl. Phys. 33 6078

    [17]

    Huang X M 1997 Physics 26 37 (in Chinese) [黄新明1997 物理 26 37]

    [18]

    Rowlinson J, Widom B 1982 Molecular Theory of Capillarity (Oxford:Oxford University Press) p86

    [19]

    Li Y R, Deng N B, Wu S Y, Peng L, Li M W 2005 Chinese Journal of Materials Research 19 395 (in Chinese) [李友荣, 邓努波, 吴双应, 彭岚, 李明伟 2005 材料研究学报 19 395]

    [20]

    Son G H 2014 International Communications in Heat and Mass Transfer 58 156

    [21]

    Daggolu P 2013 Ph. D. Dissertation (Minnesota:University of Minnesota)

  • [1] Lei Zhao-Kang, Wu Yao-Rong, Huang Chen-Yang, Mo Run-Yang, Shen Zhuang-Zhi, Wang Cheng-Hui, Guo Jian-Zhong, Lin Shu-Yu. The stability analysis of the ring-like cavitation bubble cluster structure in the standing wave field. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20231956
    [2] Li Sen-Qing, Zhang Xiao, Lin Ji. Coupled mode and novel soliton structure in fused coupler. Acta Physica Sinica, 2022, 71(23): 234207. doi: 10.7498/aps.71.20221273
    [3] Yu Tian-Lin, Fan Feng-Xian. Investigation of granular capillary rising under vertical vibration. Acta Physica Sinica, 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [4] Song Qing-Gong, Wang Li-Jie, Zhu Yan-Xia, Kang Jian-Hai, Gu Wei-Feng, Wang Ming-Chao, Liu Zhi-Feng. Effects of Si and Y co-doping on stability and oxidation resistance of γ-TiAl based alloys. Acta Physica Sinica, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [5] Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Yuan Ning-Yi, Xu Duo. Wetting behaviors of the molten silicon on graphite surface. Acta Physica Sinica, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [6] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [7] Yang Qing, Du Guang-Qing, Chen Feng, Wu Yan-Min, Ou Yan, Lu Yu, Hou Xun. Investigation on the electron dynamics of periodic nano ripple formation on fused silica induced by temporally shaped femtosecond laser. Acta Physica Sinica, 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [8] Li Xiu-Ping, Wang Shan-Jin, Chen Qiong, Luo Shi-Yu. Parametric excitation and stability of crystalline undulator radiation. Acta Physica Sinica, 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [9] Li Chun-Xi, Jiang Kai, Ye Xue-Min. Stability characteristics of thin film dewetting with insoluble surfactant. Acta Physica Sinica, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [10] Wang Can-Jun, Li Jiang-Cheng, Mei Dong-Cheng. Effect of noises on the stability of a metapopulation. Acta Physica Sinica, 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [11] Zhang Juan, Zhou Zhi-Gang, Shi Yu-Ren, Yang Hong-Juan, Duan Wen-Shan. The stability of solitay wave solution to a modified Kadomtsev-Petviashvili equation. Acta Physica Sinica, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [12] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [13] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [14] Wang Xiao-Qiu, Wang Bao-Lin. Stabilizing the silicon fullerene Si24 by La and Gd encapsulation. Acta Physica Sinica, 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [15] Ouyang Yu, Peng Jing-Cui, Wang Hui, Yi Shuang-Ping. Study on the stability of carbon nanotubes. Acta Physica Sinica, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [16] Zou Ji-Jun, Chang Ben-Kang, Yang Zhi, Gao Pin, Qiao Jian-Liang, Zeng Yi-Ping. Stability of GaAs photocathodes under different intensities of illumination. Acta Physica Sinica, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [17] Li Juan, Wu Chun-Ya, Zhao Shu-Yun, Liu Jian-Ping, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Fang. Investigation on stability of microcrystalline silicon thin film transistors. Acta Physica Sinica, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [19] Zhang Kai, Feng Jun. Symmetry and stability of a relativistic birkhoff system. Acta Physica Sinica, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] Ouyang Shi-Gen, Jiang De-Sheng, She Wei-Long. Stability of photovotaic spatial soliton with two-wavelength components. Acta Physica Sinica, 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
Metrics
  • Abstract views:  4808
  • PDF Downloads:  312
  • Cited By: 0
Publishing process
  • Received Date:  03 November 2014
  • Accepted Date:  26 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回