Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The method for determining nano-contact angle

Cui Shu-Wen Zhu Ru-Zeng Wei Jiu-An Wang Xiao-Song Yang Hong-Xiu Xu Sheng-Hua Sun Zhi-Wei

Citation:

The method for determining nano-contact angle

Cui Shu-Wen, Zhu Ru-Zeng, Wei Jiu-An, Wang Xiao-Song, Yang Hong-Xiu, Xu Sheng-Hua, Sun Zhi-Wei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Theoretical analyses are given to the known approaches of nano-contact angle and arrive at the conclusions:1) All the approaches based on the assumptions of Qusi-uniform liquid film, or uniform liquid molecular density, or uniform liquid molecular densities respectively inside and outside the interface layer cannot give the correct nano-contact angle, and it is difficult to improve them. Among these approaches, both the conclusions of nano-contact angle sure being 0° and sure being 180° are false. 2) Density functional theory (DFT)approach and Molecular Dynamics (MD) approach are capable to treat of nano-contact angle, however, the work is very heavy for using the DFT approach. 3) In 1995, Ruzeng Zhu (College Physic [Vol. 14 (2), p1-4 (in Chinese)], corrected the concept of contact angle in a earlier false theory for macro contact angle and obtained the most simple and convenient approximate formula of nano-contact angle α = (1-2EPS/EPL)π,where EPL is the potential of a liquid molecule in the internal liquid and EPS is the interact potential between a liquid molecule and the solid on which it locats. Both EPS and EPL can be obtained by MD, therefore this theory as a approximate simplified form belongs to Molecular Dynamics approach of nano-contact angle. The results of 0° and 180° for complete wetting and complete non-wetting given by this formula are correct under the assumption of incompressible fluid, therefore, this theory is worthy of further development. For this end, based on the physical analysis, we assume that the potential energy of a liquid molecule on the Gibss surface of tension outside the three-phase contact area is EPL/2x and that of a liquid molecule on the three-phase contact line is (1+kEPS/EPL)α EPL/2xπ, where x and k are optimal parameters. According to the condition that the potential energy is the same everywhere on the Gibss surface of tension, an improved approximate formula for nano-contact angle α = π(1-2xEPS/EPL)/(1+kEPS/EPL) is obtained.To obtain the value of x and k, MD simulations are carried on argon liquid cylinders placed on the solid surface under the temperature 90 K, by using the lennard-Jones (LJ) potentials for the interaction between liquid molecules and for that between a liquid molecule and a solid molecule with the variable coefficient of strength a. Eight values of a between 0.650 and 0.825 are used. The Gibss surfaces of tension are obtained by simulations and their bottom angles are treated as the approximate nano-contact angles. Combining these data with the physical conditions (when EPS/EPL=0, α = π), the optimized parameter values x=0.7141, k=1.6051 with the correlation coefficient 0.9997 are obtained by least square method. This correlation coefficient close enough to 1 indicates that for nano liquid solid contact system with different interaction strength, the parameter of optimization x and k really can be viewed as constants, so that our using MD simulation to determine of the optimized parameters is feasible and our approximate formula is of general applicability.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11072242), the Key Project of Science of the Education Bureau of Henan Province (Grant No. 15A130001), and the Doctor Research Foundation of Henan Polytechnic University (Grant No. 72515-466).
    [1]

    Young T 1805 Phil. Trans. 95 84

    [2]

    Jameson G J, del Cerro M C G 1976 J. Chem. Soc. Furaduy I. 72 883

    [3]

    White L R 1977 J. Chem. Soc. Faraday Trans 1. 73 390

    [4]

    Zhu R Z 2001 Advances In Mechanics 31 489 (in Chinese) [朱如曾 2001 力学进展 31 489]

    [5]

    Zhu R Z 2004 Advances In Applied Mechanics (Beijing:Science Press) p223 (in Chinese) [朱如曾 2004 应用力学进展 (北京:科学出版社) 第223页]

    [6]

    Solomentsev Y, White L R 1999 J. Colloid Interface Sci. 218 122

    [7]

    de Gennes P G, Brochard-Wyart F, Quere D 2004 Capillarity and wetting phenomena:drops, bubbles, pearls waves. Springer-Verlag, New York

    [8]

    Berim G O, Ruckenstein E 2004 J. Phys. Chem. B 108 19330

    [9]

    Berim G O, Ruckenstein E 2004 J. Phys. Chem. B 108 19339

    [10]

    Ruckenstein E, Berim G O 2010 Adv. Colloid Interface Sci. 157 1

    [11]

    Berim G O, Ruckenstein E 2009 J. Chem. Phys. 130 044709

    [12]

    Saville G 1977 J. Chem. Soc. Faraday Trans. 73 1122

    [13]

    Sikkenk J H, Indekeu J O, Menu G 1988 J. Stat. Phys. 52 23

    [14]

    Nijmeijer M J P, Bruin C, Bakker A F 1990 Phys. Rev. A 42 6052

    [15]

    Matsumoto S, Maruyama S, Saruwatari H 1995 ASME/JSME Therm. Eng. Conf. 2 557

    [16]

    Kimura T, Maruyama S 2002 Microscale Therm. Eng. 6 3

    [17]

    Maruyama S, Matsumoto S, Ogita A1994 Therm. Sci. Eng. 2 77

    [18]

    Maruyama S 2000 Adv in Numerical Heat Transfer (Vol.2) (New York:Taylor & Francis) pp189-226

    [19]

    Maruyama S, Kimura T, Lu M C 2002 Thermal Science & Engineering 6 23

    [20]

    Sinha S 2004 Ph.D. Dissertation (University of California, Los Angeles)

    [21]

    Shi B 2006 Ph.D. Dissertation (University of California, Los Angeles)

    [22]

    Maruyama S, Kurshige T, Matsumoto S, Yamaguchi Y, Kimura T 1998 Microscale Thermophysi. Eng. 2 49

    [23]

    Zhu R Z 1995 College Physic 14 1 (in Chinese) [朱如曾 1995 大学物理 14 1]

    [24]

    Li P 1987 Thermology (Beijing:Beijing Normal University Press) p340 (in Chinese) [李平 1987 热学(北京:北京师范大学出版社科学出版社) 第340页]

    [25]

    Gibbs J W 1928 Collected Works (New York:Longmans Green and Company Press) p219

    [26]

    Cui S W, Wei J A, Wang X S, Xu S H, Sun Z W, Zhu R Z 2015 J. Comput. Theor. Nanosci. 12 189

    [27]

    Adamson A W 1984 Physical Chemistry of Surfaces (Beijing:Science Press)

  • [1]

    Young T 1805 Phil. Trans. 95 84

    [2]

    Jameson G J, del Cerro M C G 1976 J. Chem. Soc. Furaduy I. 72 883

    [3]

    White L R 1977 J. Chem. Soc. Faraday Trans 1. 73 390

    [4]

    Zhu R Z 2001 Advances In Mechanics 31 489 (in Chinese) [朱如曾 2001 力学进展 31 489]

    [5]

    Zhu R Z 2004 Advances In Applied Mechanics (Beijing:Science Press) p223 (in Chinese) [朱如曾 2004 应用力学进展 (北京:科学出版社) 第223页]

    [6]

    Solomentsev Y, White L R 1999 J. Colloid Interface Sci. 218 122

    [7]

    de Gennes P G, Brochard-Wyart F, Quere D 2004 Capillarity and wetting phenomena:drops, bubbles, pearls waves. Springer-Verlag, New York

    [8]

    Berim G O, Ruckenstein E 2004 J. Phys. Chem. B 108 19330

    [9]

    Berim G O, Ruckenstein E 2004 J. Phys. Chem. B 108 19339

    [10]

    Ruckenstein E, Berim G O 2010 Adv. Colloid Interface Sci. 157 1

    [11]

    Berim G O, Ruckenstein E 2009 J. Chem. Phys. 130 044709

    [12]

    Saville G 1977 J. Chem. Soc. Faraday Trans. 73 1122

    [13]

    Sikkenk J H, Indekeu J O, Menu G 1988 J. Stat. Phys. 52 23

    [14]

    Nijmeijer M J P, Bruin C, Bakker A F 1990 Phys. Rev. A 42 6052

    [15]

    Matsumoto S, Maruyama S, Saruwatari H 1995 ASME/JSME Therm. Eng. Conf. 2 557

    [16]

    Kimura T, Maruyama S 2002 Microscale Therm. Eng. 6 3

    [17]

    Maruyama S, Matsumoto S, Ogita A1994 Therm. Sci. Eng. 2 77

    [18]

    Maruyama S 2000 Adv in Numerical Heat Transfer (Vol.2) (New York:Taylor & Francis) pp189-226

    [19]

    Maruyama S, Kimura T, Lu M C 2002 Thermal Science & Engineering 6 23

    [20]

    Sinha S 2004 Ph.D. Dissertation (University of California, Los Angeles)

    [21]

    Shi B 2006 Ph.D. Dissertation (University of California, Los Angeles)

    [22]

    Maruyama S, Kurshige T, Matsumoto S, Yamaguchi Y, Kimura T 1998 Microscale Thermophysi. Eng. 2 49

    [23]

    Zhu R Z 1995 College Physic 14 1 (in Chinese) [朱如曾 1995 大学物理 14 1]

    [24]

    Li P 1987 Thermology (Beijing:Beijing Normal University Press) p340 (in Chinese) [李平 1987 热学(北京:北京师范大学出版社科学出版社) 第340页]

    [25]

    Gibbs J W 1928 Collected Works (New York:Longmans Green and Company Press) p219

    [26]

    Cui S W, Wei J A, Wang X S, Xu S H, Sun Z W, Zhu R Z 2015 J. Comput. Theor. Nanosci. 12 189

    [27]

    Adamson A W 1984 Physical Chemistry of Surfaces (Beijing:Science Press)

  • [1] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] Zhou Hao, Li Yi, Liu Hai, Chen Hong, Ren Lei-Sheng. Optimized transportation meshfree method and its apllication in simulating droplet surface tension effect. Acta Physica Sinica, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [4] Shen Wan-Ping, You Shi-Jia, Mao Hong. Phase structure and surface tension in quark meson model. Acta Physica Sinica, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [5] Shi Chao, Lin Chen-Sen, Chen Shuo, Zhu Jun. Molecular dynamics simulation of characteristic water molecular arrangement on graphene surface and wetting transparency of graphene. Acta Physica Sinica, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [6] Cui Shu-Wen, Liu Wei-Wei, Zhu Ru-Zeng, Qian Ping. On the derivation of local mean pressure tensor for nonuniform systems and the analysis of uniform fluid. Acta Physica Sinica, 2019, 68(15): 156801. doi: 10.7498/aps.68.20182189
    [7] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [8] Zhang Chuan-Guo, Yang Yong, Hao Ting, Zhang Ming. Molecular dynamics simulations on the growth of thin amorphous hydrogenated carbon films on diamond surface. Acta Physica Sinica, 2015, 64(1): 018102. doi: 10.7498/aps.64.018102
    [9] Qin Ye-Hong, Tang Chao, Zhang Chun-Xiao, Meng Li-Jun, Zhong Jian-Xin. Molecular dynamics study of ripples in graphene monolayer on silicon surface. Acta Physica Sinica, 2015, 64(1): 016804. doi: 10.7498/aps.64.016804
    [10] Xu Wei, Lan Zhong, Peng Ben-Li, Wen Rong-Fu, Ma Xue-Hu. Molecular dynamics simulation on the wetting characteristic of micro-droplet on surfaces with different free energies. Acta Physica Sinica, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [11] Yu Xiao, Shen Jie, Zhong Hao-Wen, Zhang Jie, Zhang Gao-Long, Zhang Xiao-Fu, Yan Sha, Le Xiao-Yun. Simulation on surface morphology evolution of metal targets irradiated by intense pulsed electron beam. Acta Physica Sinica, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [12] Si Li-Na, Wang Xiao-Li. A molecular dynamics study on adhesive contact processes of surfaces with nanogrooves. Acta Physica Sinica, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [13] Ge Song, Chen Min. A molecular dynamics simulation on the relationship between contact angle and solid-liquid interfacial thermal resistance. Acta Physica Sinica, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [14] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy sputtering of Pt (111) surface by oblique Ni atom bombardment. Acta Physica Sinica, 2011, 60(8): 088301. doi: 10.7498/aps.60.088301
    [15] Li Rui, Hu Yuan-Zhong, Wang Hui. Molecular dynamics simulation on carbon nanotube bundles sandwitched between Si surfaces. Acta Physica Sinica, 2011, 60(1): 016106. doi: 10.7498/aps.60.016106
    [16] He Ping-Ni, Ning Jian-Ping, Qin You-Min, Zhao Cheng-Li, Gou Fu-Jun. Molecular dynamics simulations of low-energy Clatoms etching Si(100) surface. Acta Physica Sinica, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [17] Yan Chao, Duan Jun-Hong, He Xing-Dao. Molecular dynamics simulation of low-energy bombardment on Pt(111) surface. Acta Physica Sinica, 2010, 59(12): 8807-8813. doi: 10.7498/aps.59.8807
    [18] Meng Li-Juan, Li Rong-Wu, Liu Shao-Jun, Sun Jun-Dong. Molecular dynamics simulation of heterogeneous adatom diffusion on Cu(001) surface. Acta Physica Sinica, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [19] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [20] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
Metrics
  • Abstract views:  5047
  • PDF Downloads:  4219
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2014
  • Accepted Date:  03 March 2015
  • Published Online:  05 June 2015

/

返回文章
返回