Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical modeling and research on nonlinear dynamic behaviors of two-stage photovoltaic grid-connected inverter

Liao Zhi-Xian Luo Xiao-Shu Huang Guo-Xian

Citation:

Numerical modeling and research on nonlinear dynamic behaviors of two-stage photovoltaic grid-connected inverter

Liao Zhi-Xian, Luo Xiao-Shu, Huang Guo-Xian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the piecewise smooth state equation of a two-stage photovoltaic grid-connected (TPG) inverter is established and studied; based on the solution to the piecewise smooth state equation of the TPG inverter, effects of the photovoltaic array voltage on nonlinear dynamical behaviors of the TPG inverter are analyzed by using bifurcation diagram, folded diagram, 3D phase diagram, and Poincaré section. Then the nonlinear dynamical behaviors of TPG inverter are compared with the conventional one. And a strategy of expanding the input voltage range for the TPG inverter is explored. Finally, the nonlinear dynamical behaviors in it caused by the variation of main circuit parameters: such as the output inductance and capacitance of the front-stage, as well as those of the second-stage, are discussed through slow-scale bifurcation diagrams. Studies have found that it is effective to expand the input voltage range of the TPG inverter by segment control of the photovoltaic array voltage, and the chaotic phenomena in the TPG inverter can be avoided by increasing the parameter values of inertial devices such as output inductance and capacitance in the front-stage appropriately, but the values of output inductance and capacitance in the second-stage should be away from the multiple noncontiguous region, since it can cause chaotic behavior. The above work may have important guiding significance and application for improving the stability and efficiency of two-stage photovoltaic grid-connected inverter based photovoltaic power generation system.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11262004), and the Science and Technology Development Program of Guangxi Province, China (Grant No. 1348017-2).
    [1]

    Deivasundari P, Uma G, Santhi R 2014 IET Power Electron. 7 340

    [2]

    Bao B C, Zhang X, Xu J P, Wang J P 2013 IEEE Trans. Electron. Lett. 49 287

    [3]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [4]

    Yucel A C, Bagci H, Michielssen E 2013 IEEE Trans. Electromagn. Compat. 55 1154

    [5]

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510 (in Chinese) [谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 物理学报 63 120510]

    [6]

    Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zou Y L, Jiang P Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群 2003 物理学报 52 12]

    [7]

    Freddy T K S, Rahim N A, Wooi-Ping H, Che H S 2014 IEEE Trans. Power Electron. 29 5358

    [8]

    Yang Y H, Wang H, Blaabjerg F, Kerekes T 2014 IEEE Trans. Power Electron. 29 6271

    [9]

    Liu H C, Yang S 2013 Acta Phys. Sin. 62 210502 (in Chinese) [刘洪臣, 杨爽 2013 物理学报 62 210502]

    [10]

    Parvathy Shankar D, Govindarajan U, Karunakaran K 2013 IET Power Electron. 6 1956

    [11]

    Wu J K, Zhou L W, Lu W G 2012 Acta Phys. Sin. 61 210202 (in Chinese) [吴军科, 周雒维, 卢伟国 2012 物理学报 61 210202]

    [12]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 物理学报 63 010505]

    [13]

    Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O 2013 IEEE Trans. Power Electron. 28 2816

    [14]

    Gu Y J, Li W H, Zhao Y, Yang B, Li C S, He X N 2013 IEEE Trans. Power Electron. 28 793

    [15]

    Darwish A, Holliday D, Ahmed S, Massoud A M, Williams B W 2014 IEEE J. Emerg. Sel. Topics Power Electron. 2 797

    [16]

    Hongrae K, Parkhideh B, Bongers T D, Gao H 2013 IEEE Trans. Power Electron. 28 3788

    [17]

    Keyhani H, Toliyat H A 2014 IEEE Trans. Power Electron. 29 3919

    [18]

    Ahmed M E S, Orabi M, AbdelRahim O M 2013 IET Power Electron. 6 1812

    [19]

    Cecati C, Ciancetta F, Siano P 2010 IEEE Trans. Ind. Electron. 57 4115

    [20]

    Chen L, Amirahmadi A, Zhang Q, Kutkut N 2014 IEEE Trans. Power Electron. 29 3881

    [21]

    Yang B, Li W H, Zhao Y, He X N 2010 IEEE Trans. Power Electron. 25 992

    [22]

    Chan F, Calleja H 2011 IEEE Trans. Ind. Electron. 58 2683

    [23]

    Malik O, Havel P 2014 IEEE Trans. Sustain. Energy 5 673

    [24]

    Xiao H, Xie S 2012 IEEE Trans. Power Electron. 5 899

    [25]

    Liu H C, Li F, Su Z X, Sun L X 2013 Chin. Phys. B 22 110501

  • [1]

    Deivasundari P, Uma G, Santhi R 2014 IET Power Electron. 7 340

    [2]

    Bao B C, Zhang X, Xu J P, Wang J P 2013 IEEE Trans. Electron. Lett. 49 287

    [3]

    Bao B C, Zhou G H, Xu J P, Liu Z 2011 IEEE Trans. Power Electron. 26 1968

    [4]

    Yucel A C, Bagci H, Michielssen E 2013 IEEE Trans. Electromagn. Compat. 55 1154

    [5]

    Xie R L, Hao X, Wang Y, Yang X, Huang L, Wang C, Yang Y H 2014 Acta Phys. Sin. 63 120510 (in Chinese) [谢瑞良, 郝翔, 王跃, 杨旭, 黄浪, 王超, 杨月红 2014 物理学报 63 120510]

    [6]

    Luo X S, Wang B H, Chen G R, Quan H J, Fang J Q, Zou Y L, Jiang P Q 2003 Acta Phys. Sin. 52 12 (in Chinese) [罗晓曙, 汪秉宏, 陈关荣, 全宏俊, 方锦清, 邹艳丽, 蒋品群 2003 物理学报 52 12]

    [7]

    Freddy T K S, Rahim N A, Wooi-Ping H, Che H S 2014 IEEE Trans. Power Electron. 29 5358

    [8]

    Yang Y H, Wang H, Blaabjerg F, Kerekes T 2014 IEEE Trans. Power Electron. 29 6271

    [9]

    Liu H C, Yang S 2013 Acta Phys. Sin. 62 210502 (in Chinese) [刘洪臣, 杨爽 2013 物理学报 62 210502]

    [10]

    Parvathy Shankar D, Govindarajan U, Karunakaran K 2013 IET Power Electron. 6 1956

    [11]

    Wu J K, Zhou L W, Lu W G 2012 Acta Phys. Sin. 61 210202 (in Chinese) [吴军科, 周雒维, 卢伟国 2012 物理学报 61 210202]

    [12]

    Liu H C, Su Z X 2014 Acta Phys. Sin. 63 010505 (in Chinese) [刘洪臣, 苏振霞 2014 物理学报 63 010505]

    [13]

    Herran M A, Fischer J R, Gonzalez S A, Judewicz M G, Carrica D O 2013 IEEE Trans. Power Electron. 28 2816

    [14]

    Gu Y J, Li W H, Zhao Y, Yang B, Li C S, He X N 2013 IEEE Trans. Power Electron. 28 793

    [15]

    Darwish A, Holliday D, Ahmed S, Massoud A M, Williams B W 2014 IEEE J. Emerg. Sel. Topics Power Electron. 2 797

    [16]

    Hongrae K, Parkhideh B, Bongers T D, Gao H 2013 IEEE Trans. Power Electron. 28 3788

    [17]

    Keyhani H, Toliyat H A 2014 IEEE Trans. Power Electron. 29 3919

    [18]

    Ahmed M E S, Orabi M, AbdelRahim O M 2013 IET Power Electron. 6 1812

    [19]

    Cecati C, Ciancetta F, Siano P 2010 IEEE Trans. Ind. Electron. 57 4115

    [20]

    Chen L, Amirahmadi A, Zhang Q, Kutkut N 2014 IEEE Trans. Power Electron. 29 3881

    [21]

    Yang B, Li W H, Zhao Y, He X N 2010 IEEE Trans. Power Electron. 25 992

    [22]

    Chan F, Calleja H 2011 IEEE Trans. Ind. Electron. 58 2683

    [23]

    Malik O, Havel P 2014 IEEE Trans. Sustain. Energy 5 673

    [24]

    Xiao H, Xie S 2012 IEEE Trans. Power Electron. 5 899

    [25]

    Liu H C, Li F, Su Z X, Sun L X 2013 Chin. Phys. B 22 110501

Metrics
  • Abstract views:  5245
  • PDF Downloads:  399
  • Cited By: 0
Publishing process
  • Received Date:  12 December 2014
  • Accepted Date:  05 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回