Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film

Yang Jian-Qun Li Xing-Ji Ma Guo-Liang Liu Chao-Ming Zou Meng-Nan

Citation:

Effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes film

Yang Jian-Qun, Li Xing-Ji, Ma Guo-Liang, Liu Chao-Ming, Zou Meng-Nan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to their unusual electrical conductivity, carbon nanotubes as the ideal candidates for making future electronic components have extensive application potentiality. In order to meet the requirements in space electronic components for carbon nanotubes, effect of 170 keV proton irradiation on structure and electrical conductivity of multi-walled carbon nanotubes (MWCNTs) film is investigated in this paper. Surface morphologies and microstructure of the carbon nanotube films are examined by scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance (EPR) spectroscopy, respectively. Electrical conductivities of the carbon nanotube films before and after 170 keV proton irradiation are measured using four-point probe technique. SEM analysis reveals that when proton irradiation fluence is greater than 51015 p/cm2, the surface of the carbon nanotube film becomes rough and loose, and obvious bending, shrinkage, and entanglement of nanotubes are observed. Moreover, the shrinkage phenomenon of MWCNTs caused by proton irradiation is found the first time so far as we know. Based on Raman and XPS analyses, it is confirmed that 170 keV protons can improve the ordered structure of the MWCNTs, and irradiation fluence plays a key role in reducing the disorder in the MWCNTs. Improvement of the irradiated MWCNTs by 170 keV protons can be attributed to restructuring of defect sites induced by knock-on atom displacements. On the other hand, carbon impurities on surface of the MWCNT film are reduced due to the effect of sputtering by the 170 keV proton irradiation, which is also helpful to the improvement of the structure of carbon nanotubes. EPR spectra show that the electrons delocalized over carbon nanotubes decrease with increasing irradiation fluence, implying that the carbon nanotube film is not sensitive to ionizing radiation induced by the 170 keV protons, and the electrical conductivities of the MWCNTs films may be decreased. Four-point probe technical analysis shows that with increasing irradiation fluence, electrical properties of the carbon nanotubes film deteriorate, which can be attributed to the changes in electronic properties and morphology of the MWCNT films induced by 170 keV protons. Acquired results could be beneficial to tailoring of structure and properties for the carbon nanotubes film irradiated by protons to develop nanoelectronics of radiation-resistant systems.
    [1]

    Iijima S 1991 Nature 354 56

    [2]

    Endo M, Strano M S, Ajayan P M 2008 Top Appl. Phys. 111 13

    [3]

    Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦锋, 吴锦雷 2007 物理学报 56 1054]

    [4]

    Basiuk V A, Kobayashi K Kaneko T 2002 Nano Lett. 2 789

    [5]

    Khare B, Meyyappan M, More M H 2003 Nano Lett. 3 643

    [6]

    Li B, Feng Y, Ding K W, Qian G, Zhang X B, Liu Y F 2014 Trans. Nonferrous Met. Soc. China. 24 764

    [7]

    Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M 2013 New Carbon Mater. 28 81 (in Chinese) [Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M, 闫隆 2013 新型炭材料 28 81]

    [8]

    Yang T Z, Lou S Z 2010 Acta Phys. Sin. 59 447 (in Chinese) [杨通在, 罗顺忠 2010 物理学报 59 447]

    [9]

    Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 物理学报 61 036401]

    [10]

    Hong W K, Lee C, Nepal D, Geckeler K E, Shin K, Lee T 2006 Nanotechnology 17 5675

    [11]

    Yan L, Zhou G Y, Ishaq A, He S X, Gong J L, Zhu D Z 2010 Nucl. Sci. Tech. 33 44 (in Chinese) [闫隆, 周广颖, A Ishaq, 何绥霞, 巩金龙, 朱德彰 2010 核技术 33 44]

    [12]

    Ishaq A, Yan L, Zhu D Z 2009 Nucl. Instrum. Methods Phys. Res. B 267 1779

    [13]

    Banhart F 1999 Rep. Prog. Phys. 62 1181

    [14]

    Chopra N G, Ross F M, Zettle A 1996 Chem. Phys. Lett. 256 241

    [15]

    Banhart F, Li J X, Krasheninnikov A V 2005 Phys. Rev. B 71 241408

    [16]

    Ajayan P M, Ravikumar V, Charlier J C 1998 Phys. Rev. Lett. 81 1437

    [17]

    Kiang C H, Goddard W A, Beyers R 1996 J Phys. Chem. B 100 3749

    [18]

    Terrones H, Terrones M, Hernandez E 2000 Phys. Rev. Lett. 84 1716

    [19]

    Bacsa W S, Ugarte D, Chatelain A, Deheer W A 1994 Phys. Rev. B 50 15473

    [20]

    Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 542

    [21]

    Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M 2011 Appl. Surf. Sci. 258 766

    [22]

    Xu T, Yang J H, Liu J W, Fu Q 2007 Appl. Surf. Sci. 253 8945

    [23]

    Beuneu F, l'Huillier C, Salvetat J P, Bonard J M, Forro L 1999 Phys. Rev. B 59 5945

    [24]

    Adhikari A R, Bakhru H, Ajayan P M, Benson R, Chipara M 2007 Nucl. Instrum. Methods Phys. Res. B 265 347

    [25]

    Li X J, Liu C M, Geng H B, Rui E M, Yang D Z, He S Y 2012 IEEE Trans. Nucl. Sci. 59 439

    [26]

    Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z, He S Y 2010 IEEE Trans. Nucl. Sci. 57 831

  • [1]

    Iijima S 1991 Nature 354 56

    [2]

    Endo M, Strano M S, Ajayan P M 2008 Top Appl. Phys. 111 13

    [3]

    Li P J, Zhang W J, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 1054 (in Chinese) [李萍剑, 张文静, 张琦锋, 吴锦雷 2007 物理学报 56 1054]

    [4]

    Basiuk V A, Kobayashi K Kaneko T 2002 Nano Lett. 2 789

    [5]

    Khare B, Meyyappan M, More M H 2003 Nano Lett. 3 643

    [6]

    Li B, Feng Y, Ding K W, Qian G, Zhang X B, Liu Y F 2014 Trans. Nonferrous Met. Soc. China. 24 764

    [7]

    Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M 2013 New Carbon Mater. 28 81 (in Chinese) [Ishaq A, Iqbal S, Ali N, Khurram A A, Akrajas A U, Dee C F, Naseem S, Rafique H M, 闫隆 2013 新型炭材料 28 81]

    [8]

    Yang T Z, Lou S Z 2010 Acta Phys. Sin. 59 447 (in Chinese) [杨通在, 罗顺忠 2010 物理学报 59 447]

    [9]

    Li L X, Su J B, Wu Y, Zhu X F, Wang Z G 2012 Acta Phys. Sin. 61 036401 (in Chinese) [李论雄, 苏江滨, 吴燕, 朱贤方, 王占国 2012 物理学报 61 036401]

    [10]

    Hong W K, Lee C, Nepal D, Geckeler K E, Shin K, Lee T 2006 Nanotechnology 17 5675

    [11]

    Yan L, Zhou G Y, Ishaq A, He S X, Gong J L, Zhu D Z 2010 Nucl. Sci. Tech. 33 44 (in Chinese) [闫隆, 周广颖, A Ishaq, 何绥霞, 巩金龙, 朱德彰 2010 核技术 33 44]

    [12]

    Ishaq A, Yan L, Zhu D Z 2009 Nucl. Instrum. Methods Phys. Res. B 267 1779

    [13]

    Banhart F 1999 Rep. Prog. Phys. 62 1181

    [14]

    Chopra N G, Ross F M, Zettle A 1996 Chem. Phys. Lett. 256 241

    [15]

    Banhart F, Li J X, Krasheninnikov A V 2005 Phys. Rev. B 71 241408

    [16]

    Ajayan P M, Ravikumar V, Charlier J C 1998 Phys. Rev. Lett. 81 1437

    [17]

    Kiang C H, Goddard W A, Beyers R 1996 J Phys. Chem. B 100 3749

    [18]

    Terrones H, Terrones M, Hernandez E 2000 Phys. Rev. Lett. 84 1716

    [19]

    Bacsa W S, Ugarte D, Chatelain A, Deheer W A 1994 Phys. Rev. B 50 15473

    [20]

    Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y 2007 Nucl. Instrum. Methods Phys. Res. B 260 542

    [21]

    Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M 2011 Appl. Surf. Sci. 258 766

    [22]

    Xu T, Yang J H, Liu J W, Fu Q 2007 Appl. Surf. Sci. 253 8945

    [23]

    Beuneu F, l'Huillier C, Salvetat J P, Bonard J M, Forro L 1999 Phys. Rev. B 59 5945

    [24]

    Adhikari A R, Bakhru H, Ajayan P M, Benson R, Chipara M 2007 Nucl. Instrum. Methods Phys. Res. B 265 347

    [25]

    Li X J, Liu C M, Geng H B, Rui E M, Yang D Z, He S Y 2012 IEEE Trans. Nucl. Sci. 59 439

    [26]

    Li X J, Geng H B, Liu C M, Zhao Z M, Yang D Z, He S Y 2010 IEEE Trans. Nucl. Sci. 57 831

  • [1] Xue Bin-Tao, Zhang Li-Min, Liang Yong-Qi, Liu Ning, Wang Ding-Ping, Chen Liang, Wang Tie-Shan. Proton irradiation induced damage effects in CH3NH3PbI3-based perovskite solar cells. Acta Physica Sinica, 2023, 72(13): 138802. doi: 10.7498/aps.72.20222100
    [2] Fu Jing, Cai Yu-Long, Li Yu-Dong, Feng Jie, Wen Lin, Zhou Dong, Guo Qi. Single event transient effect of frontside and backside illumination image sensors under proton irradiation. Acta Physica Sinica, 2022, 71(5): 054206. doi: 10.7498/aps.71.20211838
    [3] Liu Ye, Guo Hong-Xia, Ju An-An, Zhang Feng-Qi, Pan Xiao-Yu, Zhang Hong, Gu Zhao-Qiao, Liu Yi-Tian, Feng Ya-Hui. Data inversion and erroneous annealing of floating gate cell under proton radiation. Acta Physica Sinica, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [4] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin, Shen Wei-Zu. Effect of proton irradiation on microstructure evolution of permanent magnet. Acta Physica Sinica, 2018, 67(1): 016104. doi: 10.7498/aps.67.20172025
    [5] Li Zhe-Fu, Jia Yan-Yan, Liu Ren-Duo, Xu Yu-Hai, Wang Guang-Hong, Xia Xiao-Bin. Irradiation effect of Sm2Co17 type permanent magnets. Acta Physica Sinica, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [6] Zhang Ning, Zhang Xin, Yang Ai-Xiang, Ba De-Dong, Feng Zhan-Zu, Chen Yi-Feng, Shao Jian-Xiong, Chen Xi-Meng. Damage effects of proton beam irradiation on single layer graphene. Acta Physica Sinica, 2017, 66(2): 026103. doi: 10.7498/aps.66.026103
    [7] Zeng Jun-Zhe, Li Yu-Dong, Wen Lin, He Cheng-Fa, Guo Qi, Wang Bo, Maria, Wei Yin, Wang Hai-Jiao, Wu Da-You, Wang Fan, Zhou Hang. Effects of proton and neutron irradiation on dark signal of CCD. Acta Physica Sinica, 2015, 64(19): 194208. doi: 10.7498/aps.64.194208
    [8] Wen Lin, Li Yu-Dong, Guo Qi, Ren Di-Yuan, Wang Bo, Maria. Analysis of ionizing and department damage mechanism in proton-irradiation-induced scientific charge-coupled device. Acta Physica Sinica, 2015, 64(2): 024220. doi: 10.7498/aps.64.024220
    [9] Zeng Jun-Zhe, He Cheng-Fa, Li Yu-Dong, Guo Qi, Wen Lin, Wang Bo, Maria, Wang Hai-Jiao. Particle transport simulation and effect analysis of CCD irradiated by protons. Acta Physica Sinica, 2015, 64(11): 114214. doi: 10.7498/aps.64.114214
    [10] Lü Ling, Zhang Jin-Cheng, Li Liang, Ma Xiao-Hua, Cao Yan-Rong, Hao Yue. Effects of 3 MeV proton irradiations on AlGaN/GaN high electron mobility transistors. Acta Physica Sinica, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [11] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [12] Wang Zu-Jun, Tang Ben-Qi, Xiao Zhi-Gang, Liu Min-Bo, Huang Shao-Yan, Zhang Yong. Experimental analysis of charge transfer efficiency degradation of charge coupled devices induced by proton irradiation. Acta Physica Sinica, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [13] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [14] Zhang Lin, Han Chao, Ma Yong-Ji, Zhang Yi-Men, Zhang Yu-Ming. Gamma-ray radiation effect on Ni/4H-SiC SBD. Acta Physica Sinica, 2009, 58(4): 2737-2741. doi: 10.7498/aps.58.2737
    [15] Fan Xian-Hong, Li Min, Ni Qi-Liang, Liu Shi-Jie, Wang Xiao-Guang, Chen Bo. Change of reflectivity of Mo/Si multilayer irradiated by proton. Acta Physica Sinica, 2008, 57(10): 6494-6499. doi: 10.7498/aps.57.6494
    [16] Qiao Hui, Liao Yi, Hu Wei-Da, Deng Yi, Yuan Yong-Gang, Zhang Qin-Yao, Li Xiang-Yang, Gong Hai-Mei. Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes. Acta Physica Sinica, 2008, 57(11): 7088-7093. doi: 10.7498/aps.57.7088
    [17] Fan Xian-Hong, Chen Bo, Guan Qing-Feng. The influence of proton irradiation on the microstructure of pure Al films. Acta Physica Sinica, 2008, 57(3): 1829-1833. doi: 10.7498/aps.57.1829
    [18] Li Rui-Min, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin. A 1/f noise based research of radiation induced interface trap buildup process. Acta Physica Sinica, 2007, 56(6): 3400-3406. doi: 10.7498/aps.56.3400
    [19] Wei Qiang, Liu Hai, He Shi-Yu, Hao Xiao-Peng, Wei Long. Slow positron annihilation study of Al film reflector after proton irradiation. Acta Physica Sinica, 2006, 55(10): 5525-5530. doi: 10.7498/aps.55.5525
    [20] ZHANG TING-QING, LIU CHUAN-YANG, LIU JIA-LU, WANG JIAN-PING, HUANG ZHI, XU NA-JUN, HE BAO-PING, PENG HONG-LUN, YAO YU-JUAN. RADIATION EFFECTS OF MOS DEVICE AT LOW DOSE RATE AND LOW TEMPERATURE. Acta Physica Sinica, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
Metrics
  • Abstract views:  5129
  • PDF Downloads:  196
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2014
  • Accepted Date:  04 February 2015
  • Published Online:  05 July 2015

/

返回文章
返回