Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A comparison of interatomic potentials for noble gases

Sun Su-Rong Wang Hai-Xing

Citation:

A comparison of interatomic potentials for noble gases

Sun Su-Rong, Wang Hai-Xing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Prediction of transport properties of noble gases requires the calculation of collision integrals, which depend on interatomic potentials as the input. However the accuracy of transport properties depends largely on the accuracy of interaction potentials. So different interatomic potentials of noble gases are compared in order to get the accurate transport properties. The forms and characteristics of Lennard-Jones, exponential repulsive, Hartree-Fock-Dispersion-B (HFD-B), and phenomenological model potentials that are used to describe the atomic interactions between noble gases are analyzed in this paper. Then the calculation method of transport properties is presented. Viscosities and thermal conductivities of noble gases based on these four potentials are obtained using Chapman-Enskog method in the temperature range for computation from 300 to 5000 K. It can be seen from the results that the interaction potentials have a great influence on the calculated results of transport properties. There are great differences between the results obtained using different interaction potentials. These differences of the calculated results can be explained according to the performance of interaction potentials. Results calculated with Lennard-Jones potential are always much lower in the high temperature range due to its overestimated repulsive part, and the exponential repulsive potential gives unreasonable results at low temperatures because there is no attractive well in this potential. Therefore, the accurate interatomic potentials for noble gases can be obtained only by comparing the calculated results with published experimental and theoretical data of other researchers. It can be found that the results obtained by HFD-B potential agree well with previously experimental and theoretical data. So it is apparent that the HFD-B potential in light of Hartree-Fock repulsion and dispersion theory can provide a realistic description of the trends and features of interatomic potentials, allowing accurate theoretical calculations to be made for transport properties of noble gases.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11072020).
    [1]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)

    [2]

    Hirschfelder J O, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons, Inc)

    [3]

    Pirani F, Albertı M, Castro A, Teixidor M M, Cappelletti D 2004 Chem. Phys. Lett. 394 37

    [4]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1981 Intermolecular Forces: Their Origin and Determination (Oxford: Clarendon Press)

    [5]

    Amdur I, Harkness A L 1954 J. Chem. Phys. 22 664

    [6]

    Amdur I, Mason E A 1954 J. Chem. Phys. 22 670

    [7]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 2268

    [8]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 415

    [9]

    Amdur I, Mason E A 1956 J. Chem. Phys. 25 624

    [10]

    Jones J E 1924 Proc. Royal Soc. London Series A 106 46

    [11]

    Murphy A B 1995 Plasma Chem. Plasma P 15 279

    [12]

    Aziz R A, Nain V P S, Carley J S, Taylor W L, McConville G T 1979 J. Chem. Phys. 70 4330

    [13]

    Aziz R A, Meath W J, Allnatt A R 1983 Chem. Phys. 78 295

    [14]

    Aziz R A, Slaman M J 1989 Chem. Phys. 130 187

    [15]

    Aziz R A 1976 J. Chem. Phys. 65 490

    [16]

    Aziz R A 1993 J. Chem. Phys. 99 4518

    [17]

    Devoto R S, Li C P 1968 J. Plasma Phys. 2 17

    [18]

    Kannappan D, Bose T K 1980 Phys. Fluids 23 1473

    [19]

    Aubreton J, Elchinger M F, Rat V, Fauchais P 2004 J. Phys. D: Appl. Phys. 37 34

    [20]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203]

    [21]

    Murphy A B 1997 IEEE Trans. Plasma Sci. 25 809

    [22]

    Devoto R S 1969 AIAA J. 7 199

    [23]

    Murphy A B, Tam E 2014 J. Phys. D: Appl. Phys. 47 295202

    [24]

    Bose T K 1988 Prog. Aerosp. Sci. 25 1

    [25]

    Amdur I, Mason E A 1958 Phys. Fluids 1 370

    [26]

    Monchick L 1959 Phys. Fluids 2 695

    [27]

    Liuti G, Pirani F 1985 Chem. Phys. Lett. 122 245

    [28]

    Cambi R, Cappelletti D, Liuti G, Pirani F 1991 J. Chem. Phys. 95 1852

    [29]

    Bruno D, Catalfamo C, Capitelli M, Colonna G, Pascale O De, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F 2010 Phys. Plasmas 17 112315

    [30]

    Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F 2007 Chem. Phys. 338 62

    [31]

    Ahlrichs R, Penco R, Scoles G 1977 Chem. Phys. 19 119

    [32]

    Hepburn J, Scoles G, Penco R A 1975 Chem. Phys. Lett. 36 451

    [33]

    Aziz R A, Chen H H 1977 J. Chem. Phys. 67 5719

    [34]

    Tang K T, Norbeck J M, Certain P R 1976 J. Chem. Phys. 64 3063

    [35]

    Douketis C, Scoles G, Marchetti S, Zen M, Thakkar A J 1982 J. Chem. Phys. 76 3057

    [36]

    Song B, Wang X P, Wu J T, Liu Z G 2011 Acta Phys. Sin. 60 033401 (in Chinese) [宋渤, 王晓坡, 吴江涛, 刘志刚 2011 物理学报 60 033401]

    [37]

    Aziz R A, Janzen A R, Moldover M R 1995 Phys. Rev. Lett. 74 1586

    [38]

    Aziz R A, Slaman M J 1986 Mol. Phys. 58 679

    [39]

    Aziz R A, Slaman M J 1986 Mol. Phys. 57 825

    [40]

    Hirschfelder J O, Taylor M H, Kihara T, Rutherford R 1961 Phys. Fluids 4 663

    [41]

    Miller E J, Sandler S I 1973 Phys. Fluids 16 491

    [42]

    Sandler S I, Mason E A 1969 Phys. Fluids 12 71

    [43]

    Mason E A 1957 J. Chem. Phys. 27 75

    [44]

    Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550

    [45]

    Devoto R S 1973 Phys. Fluids 16 616

    [46]

    Devoto R S 1966 Phys. Fluids 9 1230

    [47]

    Ghorui S, Heberlein J V R, Pfender E 2008 Plasma Chem. Plasma P 28 553

    [48]

    Ghorui S, Heberlein J V R, Pfender E 2007 Plasma Chem. Plasma P 27 267

    [49]

    Murphy A B 2000 Plasma Chem. Plasma P 20 279

    [50]

    Dawe R A, Smith E B 1970 J. Chem. Phys. 52 693

    [51]

    Maitland G C, Smith E B 1972 J. Chem. Eng. Data 17 150

    [52]

    Jody B J, Saxena S C, Nain V P S, Aziz R A 1977 Chem. Phys. 22 53

    [53]

    Bich E, Millat J, Vogel E 1990 J. Phys. Chem. Ref. Data 19 1289

    [54]

    Kestin J, Knierim K, Mason E A, Najafi B, Ro S T, Waldman M 1984 J. Phys. Chem. Ref. Data 13 229

    [55]

    Jain P C, Saxena S C 1974 J. Phys. E: Sci. Instrum. 7 1023

    [56]

    Guevara F A, McInteer B B, Wageman W E 1969 Phys. Fluids 12 2493

    [57]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma P 14 451

    [58]

    Saxena V K, Saxena S C 1968 Chem. Phys. Lett. 2 44

    [59]

    Chen S H P, Saxena S C 1975 Mol. Phys. 29 455

    [60]

    Nain V P S, Aziz R A, Jain P C, Saxena S C 1976 J. Chem. Phys. 65 3242

    [61]

    Saxena V K, Saxena S C 1969 J. Chem. Phys. 51 3361

    [62]

    Goldblatt M, Wageman W E 1971 Phys. Fluids 14 1024

    [63]

    London F 1930 Quantum 10

    [64]

    London F 1937 Trans. Faraday Soc. 33 8b

  • [1]

    Chapman S, Cowling T G 1970 The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases (Cambridge: Cambridge University Press)

    [2]

    Hirschfelder J O, Curtiss C F, Bird R B 1954 Molecular Theory of Gases and Liquids (New York: John Wiley and Sons, Inc)

    [3]

    Pirani F, Albertı M, Castro A, Teixidor M M, Cappelletti D 2004 Chem. Phys. Lett. 394 37

    [4]

    Maitland G C, Rigby M, Smith E B, Wakeham W A 1981 Intermolecular Forces: Their Origin and Determination (Oxford: Clarendon Press)

    [5]

    Amdur I, Harkness A L 1954 J. Chem. Phys. 22 664

    [6]

    Amdur I, Mason E A 1954 J. Chem. Phys. 22 670

    [7]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 2268

    [8]

    Amdur I, Mason E A 1955 J. Chem. Phys. 23 415

    [9]

    Amdur I, Mason E A 1956 J. Chem. Phys. 25 624

    [10]

    Jones J E 1924 Proc. Royal Soc. London Series A 106 46

    [11]

    Murphy A B 1995 Plasma Chem. Plasma P 15 279

    [12]

    Aziz R A, Nain V P S, Carley J S, Taylor W L, McConville G T 1979 J. Chem. Phys. 70 4330

    [13]

    Aziz R A, Meath W J, Allnatt A R 1983 Chem. Phys. 78 295

    [14]

    Aziz R A, Slaman M J 1989 Chem. Phys. 130 187

    [15]

    Aziz R A 1976 J. Chem. Phys. 65 490

    [16]

    Aziz R A 1993 J. Chem. Phys. 99 4518

    [17]

    Devoto R S, Li C P 1968 J. Plasma Phys. 2 17

    [18]

    Kannappan D, Bose T K 1980 Phys. Fluids 23 1473

    [19]

    Aubreton J, Elchinger M F, Rat V, Fauchais P 2004 J. Phys. D: Appl. Phys. 37 34

    [20]

    Wang H X, Sun S R, Chen S Q 2012 Acta Phys. Sin. 61 195203 (in Chinese) [王海兴, 孙素蓉, 陈士强 2012 物理学报 61 195203]

    [21]

    Murphy A B 1997 IEEE Trans. Plasma Sci. 25 809

    [22]

    Devoto R S 1969 AIAA J. 7 199

    [23]

    Murphy A B, Tam E 2014 J. Phys. D: Appl. Phys. 47 295202

    [24]

    Bose T K 1988 Prog. Aerosp. Sci. 25 1

    [25]

    Amdur I, Mason E A 1958 Phys. Fluids 1 370

    [26]

    Monchick L 1959 Phys. Fluids 2 695

    [27]

    Liuti G, Pirani F 1985 Chem. Phys. Lett. 122 245

    [28]

    Cambi R, Cappelletti D, Liuti G, Pirani F 1991 J. Chem. Phys. 95 1852

    [29]

    Bruno D, Catalfamo C, Capitelli M, Colonna G, Pascale O De, Diomede P, Gorse C, Laricchiuta A, Longo S, Giordano D, Pirani F 2010 Phys. Plasmas 17 112315

    [30]

    Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F 2007 Chem. Phys. 338 62

    [31]

    Ahlrichs R, Penco R, Scoles G 1977 Chem. Phys. 19 119

    [32]

    Hepburn J, Scoles G, Penco R A 1975 Chem. Phys. Lett. 36 451

    [33]

    Aziz R A, Chen H H 1977 J. Chem. Phys. 67 5719

    [34]

    Tang K T, Norbeck J M, Certain P R 1976 J. Chem. Phys. 64 3063

    [35]

    Douketis C, Scoles G, Marchetti S, Zen M, Thakkar A J 1982 J. Chem. Phys. 76 3057

    [36]

    Song B, Wang X P, Wu J T, Liu Z G 2011 Acta Phys. Sin. 60 033401 (in Chinese) [宋渤, 王晓坡, 吴江涛, 刘志刚 2011 物理学报 60 033401]

    [37]

    Aziz R A, Janzen A R, Moldover M R 1995 Phys. Rev. Lett. 74 1586

    [38]

    Aziz R A, Slaman M J 1986 Mol. Phys. 58 679

    [39]

    Aziz R A, Slaman M J 1986 Mol. Phys. 57 825

    [40]

    Hirschfelder J O, Taylor M H, Kihara T, Rutherford R 1961 Phys. Fluids 4 663

    [41]

    Miller E J, Sandler S I 1973 Phys. Fluids 16 491

    [42]

    Sandler S I, Mason E A 1969 Phys. Fluids 12 71

    [43]

    Mason E A 1957 J. Chem. Phys. 27 75

    [44]

    Curtiss C F, Hirschfelder J O 1949 J. Chem. Phys. 17 550

    [45]

    Devoto R S 1973 Phys. Fluids 16 616

    [46]

    Devoto R S 1966 Phys. Fluids 9 1230

    [47]

    Ghorui S, Heberlein J V R, Pfender E 2008 Plasma Chem. Plasma P 28 553

    [48]

    Ghorui S, Heberlein J V R, Pfender E 2007 Plasma Chem. Plasma P 27 267

    [49]

    Murphy A B 2000 Plasma Chem. Plasma P 20 279

    [50]

    Dawe R A, Smith E B 1970 J. Chem. Phys. 52 693

    [51]

    Maitland G C, Smith E B 1972 J. Chem. Eng. Data 17 150

    [52]

    Jody B J, Saxena S C, Nain V P S, Aziz R A 1977 Chem. Phys. 22 53

    [53]

    Bich E, Millat J, Vogel E 1990 J. Phys. Chem. Ref. Data 19 1289

    [54]

    Kestin J, Knierim K, Mason E A, Najafi B, Ro S T, Waldman M 1984 J. Phys. Chem. Ref. Data 13 229

    [55]

    Jain P C, Saxena S C 1974 J. Phys. E: Sci. Instrum. 7 1023

    [56]

    Guevara F A, McInteer B B, Wageman W E 1969 Phys. Fluids 12 2493

    [57]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma P 14 451

    [58]

    Saxena V K, Saxena S C 1968 Chem. Phys. Lett. 2 44

    [59]

    Chen S H P, Saxena S C 1975 Mol. Phys. 29 455

    [60]

    Nain V P S, Aziz R A, Jain P C, Saxena S C 1976 J. Chem. Phys. 65 3242

    [61]

    Saxena V K, Saxena S C 1969 J. Chem. Phys. 51 3361

    [62]

    Goldblatt M, Wageman W E 1971 Phys. Fluids 14 1024

    [63]

    London F 1930 Quantum 10

    [64]

    London F 1937 Trans. Faraday Soc. 33 8b

  • [1] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [2] Li Miao-Cong, Tao Qian, Xu Zhu-An. The transport properties of iron-based superconductors. Acta Physica Sinica, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [3] Wang De-Xin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [4] Chen Yan-Qiu. Calculation of transport coefficients of a xenon plasma. Acta Physica Sinica, 2014, 63(20): 205201. doi: 10.7498/aps.63.205201
    [5] Zhang Bao-Lei, Wang Jia-Xu, Xiao Ke, Li Jun-Yang. Quasi-static finite element calculation of interaction between graphene and nanoprobe. Acta Physica Sinica, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [6] Wang Hai-Xing, Sun Su-Rong, Chen Shi-Qiang. Calculation of two-temperature transport coefficients of helium plasma. Acta Physica Sinica, 2012, 61(19): 195203. doi: 10.7498/aps.61.195203
    [7] Lin Qi, Chen Yu-Hang, Wu Jian-Bao, Kong Zong-Min. Effect of N-doping on band structure and transport property of zigzag graphene nanoribbons. Acta Physica Sinica, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [8] Chen Jun, Shi Lin, Wang Nan, Bi Sheng-Shan. The analysis of transport properties stability in molecular dynamics simulations. Acta Physica Sinica, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [9] Cheng Cun-Feng, Yang Guo-Min, Jiang Wei, Pan Hu, Sun Yu, Liu An-Wen, Cheng Guo-Sheng, Hu Shui-Ming. Bright metastable noble gas atomic beam and atom trap using laser cooling. Acta Physica Sinica, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [10] Cheng Li, Wang Li-Li, Pu Shi-Zhou, Hu Ni, Zhang Yue, Liu Yong, Wei Wei, Xiong Rui, Shi Jing. Structure and electric transport properties of the spin ladder compound Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co). Acta Physica Sinica, 2010, 59(2): 1155-1162. doi: 10.7498/aps.59.1155
    [11] Wang Xiao-Po, Song Bo, Wu Jiang-Tao, Liu Zhi-Gang. Prediction of transport properties of O2-CO2 mixtures based on the inversion method. Acta Physica Sinica, 2010, 59(10): 7158-7163. doi: 10.7498/aps.59.7158
    [12] Ouyang Fang-Ping, Wang Xiao-Jun, Zhang Hua, Xiao Jin, Chen Ling-Na, Xu Hui. The divacancy-defect effect of armchair graphene nanoribbons. Acta Physica Sinica, 2009, 58(8): 5640-5644. doi: 10.7498/aps.58.5640
    [13] Xu Gen-Jian, Tan Wei-Shi, Cao Hui, Deng Kai-Ming, Wu Xiao-Shan. Study on structural and transport properties of nonstoichiometric La0.67Sr0.33-x□xMnO3. Acta Physica Sinica, 2009, 58(1): 378-383. doi: 10.7498/aps.58.378
    [14] Ouyang Fang-Ping, Xu Hui, Lin Feng. The electronic structure and transport properties ofgraphene nanoribbons with divacancies defects. Acta Physica Sinica, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [15] Ouyang Fang-Ping, Xu Hui, Wei Chen. First-principles study of electronic structure and transport properties of zigzag graphene nanoribbons. Acta Physica Sinica, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [16] Ouyang Fang-Ping, Wang Huan-You, Li Ming-Jun, Xiao Jin, Xu Hui. Study on electronic structure and transport properties of graphene nanoribbons with single vacancy defects. Acta Physica Sinica, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [17] Zeng Hui, Hu Hui-Fang, Wei Jian-Wei, Xie Fang, Peng Ping. Electronic transport properties of single-wall carbon nanotube with pentagon-heptagon-pair defect. Acta Physica Sinica, 2006, 55(9): 4822-4827. doi: 10.7498/aps.55.4822
    [18] Chai Yi-Sheng, Yang Hong-Shun, Liu Jian, Ji Ming, Bai Yan-Bo, Cao Lie-Zhao, J. C.Lasjaunias. Study on the high-resolution thermoelectric power of metallic state quasi-one-dimensional organic superconductor of (TMTSF)2ClO4 salt. Acta Physica Sinica, 2004, 53(7): 2310-2315. doi: 10.7498/aps.53.2310
    [19] Li Peng-Fei, Yan Xiao-Hong, Wang Ru-Zhi. . Acta Physica Sinica, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [20] Guo Jian-Jun. . Acta Physica Sinica, 2002, 51(3): 497-500. doi: 10.7498/aps.51.497
Metrics
  • Abstract views:  5354
  • PDF Downloads:  238
  • Cited By: 0
Publishing process
  • Received Date:  16 October 2014
  • Accepted Date:  20 March 2015
  • Published Online:  05 July 2015

/

返回文章
返回