Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride

Xing Wei Liu Hui Shi De-Heng Sun Jin-Feng Zhu Zun-Lü Lü Shu-Xia

Citation:

Theoretical study on spectroscopic properties and predissociation mechanisms of the electronic states of carbon monofluoride

Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lü, Lü Shu-Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The potential energy curves of twenty-five Ω states generated from the eleven Λ-S states (X2Π, a4Σ-, A2Σ+, B2Δ, 14Π, 12Σ-, 24Π, 14Δ, 14Σ+, 22Σ- and 24Σ-) of the carbon monofluoride are calculated using the internally contracted multireference configuration interaction approach with the Davidson modification (icMRCI+Q) in the correlation-consistent aug-cc-pV5Z and aug-cc-pV6Z basis sets, for the first time so far as we know. The spin-orbit coupling, core-valence correlation, and relativistic corrections are taken into account, and all the potential energy curves are extrapolated to the complete basis set limit by separately extrapolating the Hartree-Fock and correlation energies scheme. Based on the calculated potential energy curves, the spectroscopic parameters of the bound and quasibound Λ-S and Ω states are obtained, and a very good agreement with experiment is achieved. It demonstrates that the spectroscopic parameters of A2Σ+(1st well), 24Π Λ-S and the eleven Ω states reported here for the first time can be expected to be reliably predicted results. The 24Π quasibound state caused by avoiding crossings are found, and the important electronic configurations of the bound and quasibound Λ-S states near the equilibrium positions Re are given. Various crossings in curves of Λ-S states are revealed, and with the help of our computed spin-orbit coupling matrix elements, the predissociation mechanisms of the a4Σ- and B2Δ states are analyzed. Dissociation relationships and dissociation channels of the twenty-five Ω states also are given. The transition properties of the A2Σ+-X2Π transitions are finally predicted, and our computed Franck-Condon factors and radiative lifetimes match the available experimental results very well.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275132), the Program for Science & Technology of Henan Province of China (Grant No. 142300410201), the Key Program for Science and Technology of Educational Bureau of Henan Province, China (Grant No. 14B140024), and the Youth Sustentation Fund of Xinyang Normal University, China (Grant No. 2013-QN-063).
    [1]

    Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377

    [2]

    Reid C J 1996 Chem. Phys. 210 501

    [3]

    Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1

    [4]

    Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318

    [5]

    Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343

    [6]

    Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748

    [7]

    Luquea J, Hudson E A, Booth J P 2003 J. Chem. Phys. 118 622

    [8]

    Andrews E B, Barrow R F 1950 Nature 165 890

    [9]

    Andrews E B, Barrow R F 1951 Proc. Phys. Soc. A 64 481

    [10]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. Ⅳ): Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) pp138

    [11]

    Kawaguchi K, Yamada C, Hamada Y, Hirota E 1981 J. Mol. Spectrosc. 86 136

    [12]

    Grieman F J, Droege A T, Engelking P C 1983 J. Chem. Phys. 78 2248

    [13]

    Gondal M A, Rohrbeck W, Urban W 1983 J. Mol. Spectrosc. 100 290

    [14]

    Brown J M, Schubert J E, Saykally R J, Evenson K M 1986 J. Mol. Spectrosc. 120 421

    [15]

    Booth J P, Hancock G 1988 Chem. Phys. Lett 150 457

    [16]

    Nakanaga T, Ito F, Takeo H 1994 J. Mol. Spectrosc. 165 88

    [17]

    Liu Y Y, Liu Z A, Davies P B 1995 J. Mol. Spectrosc. 171 402

    [18]

    Booth J P, Hancock G, Toogood M J, McKendrick K G 1996 J. Phys. Chem. 100 47

    [19]

    Wollbrandt J, Rossberg M, Strube W, Linke E 1996 J. Mol. Spectrosc. 176 385

    [20]

    Nizamov B, Dagdigian P J 2001 J. Phys. Chem. A 105 29

    [21]

    O’Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [22]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [23]

    Dunning T H, White W P, Pitzer R M, Mathews C W 1979 J. Mol. Spectrosc. 75 297

    [24]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [25]

    Hess B A, Buenker R J 1986 Chem. Phys. 101 211

    [26]

    Rendell A P, Bauschlicher C W Jr, Langhoff S R 1989 Chem. Phys. Lett. 163 354

    [27]

    Gutsev G L, Ziegler T 1991 J. Phys. Chem. 95 7220

    [28]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [29]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [30]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [31]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [32]

    Chakraborty S, Ahmed M, Jackson T L, Thiemens M H 2008 Science 321 1328

    [33]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [34]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [37]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [38]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [39]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [40]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [41]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 243102 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2012 物理学报 61 243102]

    [42]

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2013 物理学报 62 203104]

    [43]

    Xing W, Shi D H, Sun J F, Liu H, Zhu Z L 2013 Mol. Phys. 111 673

    [44]

    Xing W, Shi D H, Sun J F, Zhu Z L 2013 Eur. Phys. J. D 67 228

    [45]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound levels. (University of Waterloo Chemical Physics Research Report CP-663)

    [46]

    Moore C E 1971 Atomic energy levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 21-60

  • [1]

    Morino I, Yamada K M T, Belov S P, Winnewisser G 2000 Astrophys. J. 532 377

    [2]

    Reid C J 1996 Chem. Phys. 210 501

    [3]

    Coburn J W 1982 Plasma Chem. Plasma Proc. 2 1

    [4]

    Booth J P, Hancock G, Perry N D 1987 Appl. Phys. Lett. 50 318

    [5]

    Miyata K, Hori M, Goto T 1996 J. Vac. Sci. Technol. A 14 2343

    [6]

    Georgieva V, Bogaerts A, Gijbels R 2003 J. Appl. Phys. 94 3748

    [7]

    Luquea J, Hudson E A, Booth J P 2003 J. Chem. Phys. 118 622

    [8]

    Andrews E B, Barrow R F 1950 Nature 165 890

    [9]

    Andrews E B, Barrow R F 1951 Proc. Phys. Soc. A 64 481

    [10]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. Ⅳ): Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company) pp138

    [11]

    Kawaguchi K, Yamada C, Hamada Y, Hirota E 1981 J. Mol. Spectrosc. 86 136

    [12]

    Grieman F J, Droege A T, Engelking P C 1983 J. Chem. Phys. 78 2248

    [13]

    Gondal M A, Rohrbeck W, Urban W 1983 J. Mol. Spectrosc. 100 290

    [14]

    Brown J M, Schubert J E, Saykally R J, Evenson K M 1986 J. Mol. Spectrosc. 120 421

    [15]

    Booth J P, Hancock G 1988 Chem. Phys. Lett 150 457

    [16]

    Nakanaga T, Ito F, Takeo H 1994 J. Mol. Spectrosc. 165 88

    [17]

    Liu Y Y, Liu Z A, Davies P B 1995 J. Mol. Spectrosc. 171 402

    [18]

    Booth J P, Hancock G, Toogood M J, McKendrick K G 1996 J. Phys. Chem. 100 47

    [19]

    Wollbrandt J, Rossberg M, Strube W, Linke E 1996 J. Mol. Spectrosc. 176 385

    [20]

    Nizamov B, Dagdigian P J 2001 J. Phys. Chem. A 105 29

    [21]

    O’Hare P A G, Wahl A C 1971 J. Chem. Phys. 5 666

    [22]

    Hall J A, Richards W G 1972 Mol. Phys. 23 331

    [23]

    Dunning T H, White W P, Pitzer R M, Mathews C W 1979 J. Mol. Spectrosc. 75 297

    [24]

    White W P, Pitzer R M, Mathews C W, Dunning T H 1979 J. Mol. Spectrosc. 75 318

    [25]

    Hess B A, Buenker R J 1986 Chem. Phys. 101 211

    [26]

    Rendell A P, Bauschlicher C W Jr, Langhoff S R 1989 Chem. Phys. Lett. 163 354

    [27]

    Gutsev G L, Ziegler T 1991 J. Phys. Chem. 95 7220

    [28]

    Petsalakis I D 1999 J. Chem. Phys. 110 10730

    [29]

    Petsalakis I D, Theodorakopoulos G 2011 Chem. Phys. Lett. 508 17

    [30]

    Li R, Wei C L, Sun Q X, Sun E P, Jin M X, Xu H F, Yan B 2013 Chin. Phys. B 22 123103

    [31]

    Li R, Zhang X M, Jin M X, Xu H F, Yan B 2014 Chin. Phys. B 23 053101

    [32]

    Chakraborty S, Ahmed M, Jackson T L, Thiemens M H 2008 Science 321 1328

    [33]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [34]

    Richartz A, Buenker R J 1978 Chem. Phys. 28 305

    [35]

    Woon D E, Dunning T H 1993 J. Chem. Phys. 98 1358

    [36]

    Mourik T V, Wilson A K, Dunning T H 1999 Mol. Phys. 96 529

    [37]

    Peterson K A, Dunning T H 2002 J. Chem. Phys. 117 10548

    [38]

    Reiher M, Wolf A 2004 J. Chem. Phys. 121 2037

    [39]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215

    [40]

    Truhlar D G 1998 Chem. Phys. Lett. 294 45

    [41]

    Xing W, Liu H, Shi D H, Sun J F, Zhu Z L 2012 Acta Phys. Sin. 61 243102 (in Chinese) [邢伟, 刘慧, 施德恒, 孙金峰, 朱遵略 2012 物理学报 61 243102]

    [42]

    Liu H, Xing W, Shi D H, Sun J F, Zhu Z L 2013 Acta Phys. Sin. 62 203104 (in Chinese) [刘慧, 邢伟, 施德恒, 孙金峰, 朱遵略 2013 物理学报 62 203104]

    [43]

    Xing W, Shi D H, Sun J F, Liu H, Zhu Z L 2013 Mol. Phys. 111 673

    [44]

    Xing W, Shi D H, Sun J F, Zhu Z L 2013 Eur. Phys. J. D 67 228

    [45]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound levels. (University of Waterloo Chemical Physics Research Report CP-663)

    [46]

    Moore C E 1971 Atomic energy levels (Vol. 1) (Washington, DC: National Bureau of Standard) pp 21-60

  • [1] Spectroscopic and transition properties of LiCl- anion. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211688
    [2] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [3] Wei Chang-Li,  Liao Hao,  Luo Tai-Sheng,  Ren Yin-Shuan,  Yan Bing. Theoretical study on potential curves and spectroscopic constants of low-lying electronic states of Na2+ cation. Acta Physica Sinica, 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [4] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [5] Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation. Acta Physica Sinica, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [6] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [7] Wang Jie-Min, Wang Xi-Juan, Tao Ya-Ping. Spectroscopic parameters and molecular constants of 75As32S+ and 75As34S+. Acta Physica Sinica, 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [8] Wang Jie-Min, Feng Heng-Qiang, Sun Jin-Feng, Shi De-Heng, Li Wen-Tao, Zhu Zun-Lüe. A study on spectroscopic parameters of X2+, A2 and B2+ low-lying electronic states of SiN radical. Acta Physica Sinica, 2013, 62(1): 013105. doi: 10.7498/aps.62.013105
    [9] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [10] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [11] Yu Kun, Zhang Xiao-Mei, Liu Yu-Fang. Ab initio calculation on the potential energy curves and spectroscopic properties of the low-lying excited states of BCl. Acta Physica Sinica, 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [12] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [13] Wang Jie-Min, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lue, Li Wen-Tao. Theoretical investigation on molecular constants of PH, PD and PT molecules. Acta Physica Sinica, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [14] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [15] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Investigations on spectroscopic parameters and molecular constants of SO+ (b4∑-) cation. Acta Physica Sinica, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [16] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [17] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [18] Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhang Jin-Ping, Zhu Zun-Lüe. Elastic collisions between O and D atoms at low temperature and accurate analytic potential energy function and molecular constants of the OD(X2Π) radical. Acta Physica Sinica, 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [19] Shi De-Heng, Zhang Jin-Ping, Sun Jin-Feng, Liu Yu-Fang, Zhu Zun-Lüe. Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD(X2Π) radical. Acta Physica Sinica, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
Metrics
  • Abstract views:  4860
  • PDF Downloads:  160
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2014
  • Accepted Date:  20 March 2015
  • Published Online:  05 August 2015

/

返回文章
返回