Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method

Li Shan-Shan Zhang Hao Bai Jin-Jun Liu Wei-Wei Chang Sheng-Jiang

Citation:

Ultrahigh birefringence terahertz porous fibers based on interlacing layered infiltration method

Li Shan-Shan, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei, Chang Sheng-Jiang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, an interlacing layered infiltration method is proposed, using some liquid material as the common porous fiber with triangular air-hole array in the core region, which can achieve the characteristic of ultrahigh modal birefringence in this circumstance. Förstly, the basic properties of the porous fiber with a porosity of 43.08% are thoroughly analyzed by using a full-vector finite element method, as wellas the dispersion curves of the fiber, modal birefringence, fraction of the fundamental modal power for x and y polarizations, loss characteristics, etc. Secondly, to enhance the asymmetry of the proposed structure, some liquid material with a refractive index of 1.4 is infiltrated into the air holes in the fiber core region, by using interlacing filling method. It is found that the modal birefringence of the fiber dramatically increases. At an operation frequency of 1.1 THz, the peak value of modal birefringence rises from 1.05×10-3 to 1.36×10-2 after the infiltration operation. The fundamental model effective material absorption loss coefficients for x and y polarization modes increase from 0.16 dB/cm to 0.25 dB/cm and 0.28 dB/cm, respectively. And the operation frequency band increases from 1.1 to 1.9 THz. Simulation results indicate that the modal birefringence of the fiber can be remarkably improved by increasing the refractive index of the infiltrated liquid material. With an operation frequency of 2.2 THz and a refractive index of 2, this fiber can realize an ultrahigh modal birefringence of 8.03×10-2. Moreover, to achieve the gradient distribution of the refractive index, an interlacing layered infiltration method to infiltrate the liquid material with different refractive indices in different layers is employed. Results show that the confinement capability to the guided modes has been greatly enhanced. Results also show that the peak value of the modal birefringence for the fundamental modes does not exist in the operation band. It represents a monotonically increasing trend. At an operation frequency of 2.2 THz, the fiber modal birefringence can reach as high as 7.19×10-2. This scheme presents an ultrahigh modal birefringence, and it presents the tunable characteristic as well. This study may be of significance in the practical applications in the field of THz functional devices.
    • Funds: Project supported by the National Basic Research Program of China (Grant NO. 2014CB339800), the National High Technology Research and Development Program of China (Grant No. 2013AA014201), the National Natural Science Foundation of China (Grant Nos. 61171027, 11274182, 11004110), the Doctoral Fund of Ministry of Education of China (Grant No. 20090031110033), the Science and Technology Program of Tianjin, china (Grant No. 13RCGFGX01127), and the Tianjin City High School Science & Technology Fund Planning Project (Grant No. 20120706).
    [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Xu L, Zhang XC, Auston D 1992 Appl. Phys. Lett. 61 1784

    [3]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 物理学报 57 7747]

    [4]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Peking University Press) (in Chinese) [许景周, 张希成 2007 太赫兹科学技术和应用 (北京: 北京大学出版社)]

    [5]

    Zhong R B, Zhou J, Liu S G 2012 Journal of University of Electronic Science and Technology of China 2 247 (in Chinese) [钟任斌, 周俊, 刘盛纲 2012 电子科技大学学报 2 247]

    [6]

    Atakaramians S, Afshar S V, Fischer B M, Abbott D, Monro T M 2009 Optics Communications 282 36

    [7]

    Chen D, Chen H 2010 Journal of Electromagnetic Waves and Applications 24 1553

    [8]

    Bai J J, Wang C H, Huo B Z, Wang X H, Chang S J 2011 Acta Phys. Sin. 60 098702 (in Chinese) [白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江 2011 物理学报 60 098702]

    [9]

    Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A 2000 Opt Lett 25 1325

    [10]

    Wang L, Yang D 2007 Opt. Expr. 15 8892

    [11]

    Wang J L, Yao J Q, Chen H M, Zhong K, Li Z Y 2011 Journal of Opt 13 055402

    [12]

    Wang D D, Wang L L, Zhang T, Jie Y 2014 Acta Phot. Sin. 43 0606002 (in Chinese) [王豆豆, 王丽莉, 张涛, 解忧 2014 光子学报 43 0606002]

    [13]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 物理学报 59 3255]

    [14]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [15]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H 2011 Journal of Applied Physics 109 043505

    [16]

    Ji J J, Fan W H, Kong D P, Wang L L 2013 Infrared and Laser Engineering 5 1213 (in Chinese) [姬江军, 范文慧, 孔德鹏, 王丽莉 2013 红外与激光工程 5 1213]

    [17]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Appl. Phys. Lett. 92 071101

    [18]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

    [19]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Opt. Express 16 6340

    [20]

    Chen S, Fan F, Chang S J, Miao Y, Chen M, Li J N 2014 Optics Express 22 6313

  • [1]

    Ferguson B, Zhang X C 2003 Physics 32 286 (in Chinese) [Ferguson B, 张希成 2003 物理 32 286]

    [2]

    Xu L, Zhang XC, Auston D 1992 Appl. Phys. Lett. 61 1784

    [3]

    Deng Y Q, Lang L Y, Xing Q R, Cao S Y, Yu J, Xu T, Li J, Xiong L M, Wang Q Y, Zhang Z G 2008 Acta Phys. Sin. 57 7747 (in Chinese) [邓玉强, 郎利影, 邢岐荣, 曹士英, 靖于, 涛徐 2008 物理学报 57 7747]

    [4]

    Xu J Z, Zhang X C 2007 Terahertz science technology and application (Beijing: Peking University Press) (in Chinese) [许景周, 张希成 2007 太赫兹科学技术和应用 (北京: 北京大学出版社)]

    [5]

    Zhong R B, Zhou J, Liu S G 2012 Journal of University of Electronic Science and Technology of China 2 247 (in Chinese) [钟任斌, 周俊, 刘盛纲 2012 电子科技大学学报 2 247]

    [6]

    Atakaramians S, Afshar S V, Fischer B M, Abbott D, Monro T M 2009 Optics Communications 282 36

    [7]

    Chen D, Chen H 2010 Journal of Electromagnetic Waves and Applications 24 1553

    [8]

    Bai J J, Wang C H, Huo B Z, Wang X H, Chang S J 2011 Acta Phys. Sin. 60 098702 (in Chinese) [白晋军, 王昌辉, 霍丙忠, 王湘晖, 常胜江 2011 物理学报 60 098702]

    [9]

    Ortigosa-Blanch A, Knight J C, Wadsworth W J, Arriaga J, Mangan B J, Birks T A 2000 Opt Lett 25 1325

    [10]

    Wang L, Yang D 2007 Opt. Expr. 15 8892

    [11]

    Wang J L, Yao J Q, Chen H M, Zhong K, Li Z Y 2011 Journal of Opt 13 055402

    [12]

    Wang D D, Wang L L, Zhang T, Jie Y 2014 Acta Phot. Sin. 43 0606002 (in Chinese) [王豆豆, 王丽莉, 张涛, 解忧 2014 光子学报 43 0606002]

    [13]

    Wang D D, Wang L L 2010 Acta Phys. Sin. 59 3255 (in Chinese) [王豆豆, 王丽莉 2010 物理学报 59 3255]

    [14]

    Nielsen K, Rasmussen H K, Adam A J, Planken P C, Bang O, Jepsen P U 2009 Optics Express 17 8592

    [15]

    Cunningham P D, Valdes N N, Vallejo F A, Hayden L M, Polishak B, Zhou X H 2011 Journal of Applied Physics 109 043505

    [16]

    Ji J J, Fan W H, Kong D P, Wang L L 2013 Infrared and Laser Engineering 5 1213 (in Chinese) [姬江军, 范文慧, 孔德鹏, 王丽莉 2013 红外与激光工程 5 1213]

    [17]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Appl. Phys. Lett. 92 071101

    [18]

    Snyder A W, Love J D 2000 Optical Waveguide Theory (Section 11-22) (Kluwer Academic Publishers) p232

    [19]

    Hassani A, Dupuis A, Skorobogatiy M 2008 Opt. Express 16 6340

    [20]

    Chen S, Fan F, Chang S J, Miao Y, Chen M, Li J N 2014 Optics Express 22 6313

  • [1] Dai Zhen-Fei, Jiang Wen-Fan, Wang Ling, Chen Ming-Yang, Gao Yong-Feng, Ren Nai-Fei. Tunable mode-selective characteristics of a mode-filter petal-fiber with liquid rods. Acta Physica Sinica, 2019, 68(8): 084206. doi: 10.7498/aps.68.20181890
    [2] Wang Jing-Li, Liu Yang, Zhong Kai. Dual-core terahertz polarization splitter based on porous fibers with near-tie units. Acta Physica Sinica, 2017, 66(2): 024209. doi: 10.7498/aps.66.024209
    [3] Li Jie, Li Meng-Meng, Sun Li-Peng, Fan Peng-Cheng, Ran Yang, Jin Long, Guan Bai-Ou. Polarization-maintaining microfiber-based evanescent-wave sensors. Acta Physica Sinica, 2017, 66(7): 074209. doi: 10.7498/aps.66.074209
    [4] Xiong Meng-Jie, Li Jin-Yan, Luo Xing, Shen Xiang, Peng Jing-Gang, Li Hai-Qing. Experimental and numerical study of tuneable supercontinuum generation in new kind of highly birefringent photonic crystal fiber. Acta Physica Sinica, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [5] Li Shan-Shan, Chang Sheng-Jiang, Zhang Hao, Bai Jin-Jun, Liu Wei-Wei. A THz polarization splitter made from suspended dual-core porous fiber. Acta Physica Sinica, 2014, 63(11): 110706. doi: 10.7498/aps.63.110706
    [6] Su Wei, Lou Shu-Qin, Zou Hui, Han Bo-Lin. Highly birefringent ZrF4-BaF2-LaF3-AlF3-NaF photonic quasi-crystal fiber with twin grapefruits holes. Acta Physica Sinica, 2014, 63(14): 144202. doi: 10.7498/aps.63.144202
    [7] Wang Er-Lei, Jiang Hai-Ming, Xie Kang, Zhang Xiu-Xia. Photonic crystal fibers with high nonlinearity, large birefringence and multiple zero dispersion-wavelength. Acta Physica Sinica, 2014, 63(13): 134210. doi: 10.7498/aps.63.134210
    [8] Zhao Yuan-Yuan, Zhou Gui-Yao, Li Jian-She, Han Ying, Wang Chao, Wang Wei. Supercontinuum experimental study of V-type photonic crystal fiber with high birefringence. Acta Physica Sinica, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [9] Cao Ye, Li Rong-Min, Tong Zheng-Rong. Investigation of a new kind of high birefringence photonic crystal fiber. Acta Physica Sinica, 2013, 62(8): 084215. doi: 10.7498/aps.62.084215
    [10] Xu Qiang, Miao Run-Cai, Zhang Ya-Ni. High birefringence and negative dispersion effect of hexagonal honeycomb lattice photonic crystal fiber. Acta Physica Sinica, 2012, 61(23): 234210. doi: 10.7498/aps.61.234210
    [11] Fu Xiao-Xia, Chen Ming-Yang. Terahertz transmission optical fiber with low absorptionloss and high birefringence. Acta Physica Sinica, 2011, 60(7): 074222. doi: 10.7498/aps.60.074222
    [12] Wang Jing-Li, Yao Jian-Quan, Chen He-Ming, Bing Pi-Bin, Li Zhong-Yang, Zhong Kai. Design and study of high birefringent terahertz photonic crystal fiber with hybrid crystal lattice. Acta Physica Sinica, 2011, 60(10): 104219. doi: 10.7498/aps.60.104219
    [13] Xia Chang-Ming, Zhou Gui-Yao, Han Ying, Liu Zhao-Lun, Hou Lan-Tian. Investigation of V-type photonic crystal fiber with high birefringence. Acta Physica Sinica, 2011, 60(9): 094213. doi: 10.7498/aps.60.094213
    [14] Zhang Ya-Ni. Low-dispersion high-birefringence effect of squeezed hexagonal lattice elliptical hole photonic crystal fiber. Acta Physica Sinica, 2010, 59(6): 4050-4055. doi: 10.7498/aps.59.4050
    [15] Zhang Ya-Ni. High-birefringence negative dispersion effect of novel rectangular lattice photonic crystal fiber. Acta Physica Sinica, 2010, 59(12): 8632-8639. doi: 10.7498/aps.59.8632
    [16] Zhang Lei, Li Shu-Guang, Yao Yan-Yan, Fu Bo, Zhang Mei-Yan, Zheng Yi. Characteristics of nano-structured photonic crystal fibers with high birefringence. Acta Physica Sinica, 2010, 59(2): 1101-1107. doi: 10.7498/aps.59.1101
    [17] Fu Bo, Li Shu-Guang, Yao Yan-Yan, Zhang Lei, Zhang Mei-Yan, Liu Si-Ying. Coupling characteristics of dual-core high birefringence photonic crystal fibers. Acta Physica Sinica, 2009, 58(11): 7708-7715. doi: 10.7498/aps.58.7708
    [18] Zhang Xiao-Juan, Zhao Jian-Lin, Hou Jian-Ping. A novel photonic crystal fiber with high birefringence. Acta Physica Sinica, 2007, 56(8): 4668-4676. doi: 10.7498/aps.56.4668
    [19] Huang Yan-Ping, Qi Chun-Yuan. Measurement of refractive index profile of holey fiber using quantitative phase tomography. Acta Physica Sinica, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] Tang Xin-feng, Chen Li-Dong, T Goto, T Hiral, Yuan Run-Zhang. Thermoelectricpropertiesofn typeBayNixCo4-xSb1 2. Acta Physica Sinica, 2002, 51(12): 2823-2828. doi: 10.7498/aps.51.2823
Metrics
  • Abstract views:  4659
  • PDF Downloads:  128
  • Cited By: 0
Publishing process
  • Received Date:  20 January 2015
  • Accepted Date:  26 February 2015
  • Published Online:  05 August 2015

/

返回文章
返回