Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm

Ma Xin Gong Wei Ma Ying-Ying Fu Dong-Wei Han Ge Xiang Cheng-Zhi

Citation:

Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm

Ma Xin, Gong Wei, Ma Ying-Ying, Fu Dong-Wei, Han Ge, Xiang Cheng-Zhi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The differential absorption lidar (DIAL) can help us to obtain the vertical distribution of the atmospheric CO2 concentration, which is important to the study of carbon sources and carbon sinks. We design a seeder injected pulsed laser system, working as the laser source of the CO2 DIAL. Unlike the other CO2 DIALs, our laser source is the result of difference frequency of two lasers at the wavelengths of 1064 nm and 634 nm, respectively. It should be pointed out that the high frequency (wavelength) accuracy and stability of the emission laser, especially the on-line one, are greatly required in the CO2 DIAL system. However, the mechanical properties of the dye laser (634 nm) and the application of laser difference frequency technique make the wavelength drift constantly; besides, the extremely unstable energy of the pulsed laser increases the difficulty in identifying and stabilizing the on-line wavelength. Hence, a fast and efficient frequency (wavelength) stabilization method is needed to achieve a stable emission wavelength. Aiming at the research gap of the high precision requirements of on-line laser for this kind of pulsed DIAL, we propose a frequency stabilization method based on matching algorithm. The basic idea is to utilize the saturable absorption of CO2 molecule, by measuring the differential residual-intensity after the laser passing through dual absorption cells to calculate the optical depth (OD) and obtain the so-called pseudo CO2 absorption spectrum, which can be used to identify the on-line laser accurately. Finally, based on the matching algorithm of one-dimensional image, treating the OD as the gray value in the image, we implement the OD matching as a most important part in the process of frequency stabilization, and determine the exact position of the real-time output laser in the measured pseudo absorption spectrum. Thus, when some errors happen to the monitored ODs, by continuously adjusting the wavelength of the laser, the proposed method can fulfill the wavelength adjustment and accomplish the continuous frequency stabilization for on-line laser. Experimental results show that the frequency stabilization algorithm based on OD matching can satisfy the requirements for pulsed on-line laser frequency stabilization, and the sum of squares of deviation method is the optimal one in this application, with a stabilization accuracy of 0.3 pm. Besides, the proposed method can also be introduced in other laser frequency stabilization.
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 41127901) and the Fundamental Research Funds for the Central Universities (Grant No. 2014619020201).
    [1]

    Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S, Regnier P A 2013 Nature 504 61

    [2]

    Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J 2013 Nature Geoscience 6 597

    [3]

    Fung I Y, Doney S C, Lindsay K, John J 2005 Proc. Natl. Acad. Sci. USA 102 11201

    [4]

    Pliutau D, Prasad N S 2012 Laser Applications to Chemical, Security and Environmental Analysis San Diego, California, United States, January 29-February 1, 2012 LT6B.10

    [5]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J P, Sun X L, Hasselbrack W E, Yu A, Amediek A, Choi Y, Browell E V 2010 Proc. SPIE7832, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, Toulouse, France, September 20, 2010 78320D-13

    [6]

    Numata K, Chen J R, Wu S T, Abshire J B, Krainak M A 2011 Appl. Opt. 50 1047

    [7]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748

    [8]

    Allan G R, Riris H, Abshire J B, X. Sun, Wilson E, Burris J F, Krainak M A 2008 IEEE Aerospace Conference, Big Sky, Montana, United States, March 1-8, 2008 p1

    [9]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770

    [10]

    Yu H, Hu S, Wu X Q, Cao K F, Meng X Q, Yuan K E, Huang J, Shao S S, Xu Z H 2012 Acta Optica Sinica 32 (8) 13 (in Chinese) [于海利, 胡顺星, 吴晓庆, 曹开法, 孟祥谦, 苑克娥, 黄见, 邵石生, 徐之海 2012光学学报 32 (8) 13]

    [11]

    Wu J, Wang X H, Fang Y H, Xiong W, Shi H L, Qiao Y L 2011 Acta Opt. Sin. 31 0101 (in Chinese) [吴军, 王先华, 方勇华, 熊伟, 施海亮, 乔延利 2011 光学学报 31 0101]

    [12]

    Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 010335

    [13]

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 物理学报 63 104214]

    [14]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

    [15]

    Raybaut M, Schmid T, Godard A, Mohamed A K, Lefebvre M, Marnas F, Flamant P, Bohman A, Geiser P, Kaspersen P 2009 Opt. Lett. 34 2069

    [16]

    Ishii S, Mizutani K, Fukuoka H, Ishikawa T, Baron, P Iwai H, Aoki T, Itabe T, Sato A, Asai K 2010 Proc. SPIE 7860, Lidar Remote Sensing for Environmental Monitoring XI Incheon, Republic of Korea, October 28, 2010 786004

    [17]

    Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020702 (in Chinese) [葛烨, 胡以华, 舒嵘, 洪光烈 2015 物理学报 64 020702]

    [18]

    Yan J X, Gong S S, Liu Z S 2011 Environmental monitoring lidar (Beijing: Science Press) (Ed. 2nd) pp184-185 (in Chinese) [阎吉祥, 龚顺生, 刘智深 2011 环境监测激光雷达 (北京: 科学出版社) (第2版) 第184-185页]

    [19]

    Gong W, Ma X, Dong Y N, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [20]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, Boudon V, Brown L 2013 J. Quant. Spectrosc. Ra. 130 4

    [21]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Ra. 110 533

    [22]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [23]

    Xiang C Z, Gong W, Ma X, Cheng X W 2014 Acta Optia Sinica 9 161 (in Chinese) [相成志, 龚威, 马昕, 程学武 2014 光学学报 9 161]

    [24]

    Zhang J Q, Pan L, Wang S G 2009 Photogrammetry (Hubei: Wuhan University Press) pp152-157 (in Chinese) [张剑清, 潘励, 王树根 2009 摄影测量学 (湖北: 武汉大学出版社) 第152-157页]

  • [1]

    Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S, Regnier P A 2013 Nature 504 61

    [2]

    Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J 2013 Nature Geoscience 6 597

    [3]

    Fung I Y, Doney S C, Lindsay K, John J 2005 Proc. Natl. Acad. Sci. USA 102 11201

    [4]

    Pliutau D, Prasad N S 2012 Laser Applications to Chemical, Security and Environmental Analysis San Diego, California, United States, January 29-February 1, 2012 LT6B.10

    [5]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J P, Sun X L, Hasselbrack W E, Yu A, Amediek A, Choi Y, Browell E V 2010 Proc. SPIE7832, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, Toulouse, France, September 20, 2010 78320D-13

    [6]

    Numata K, Chen J R, Wu S T, Abshire J B, Krainak M A 2011 Appl. Opt. 50 1047

    [7]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748

    [8]

    Allan G R, Riris H, Abshire J B, X. Sun, Wilson E, Burris J F, Krainak M A 2008 IEEE Aerospace Conference, Big Sky, Montana, United States, March 1-8, 2008 p1

    [9]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770

    [10]

    Yu H, Hu S, Wu X Q, Cao K F, Meng X Q, Yuan K E, Huang J, Shao S S, Xu Z H 2012 Acta Optica Sinica 32 (8) 13 (in Chinese) [于海利, 胡顺星, 吴晓庆, 曹开法, 孟祥谦, 苑克娥, 黄见, 邵石生, 徐之海 2012光学学报 32 (8) 13]

    [11]

    Wu J, Wang X H, Fang Y H, Xiong W, Shi H L, Qiao Y L 2011 Acta Opt. Sin. 31 0101 (in Chinese) [吴军, 王先华, 方勇华, 熊伟, 施海亮, 乔延利 2011 光学学报 31 0101]

    [12]

    Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 010335

    [13]

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 物理学报 63 104214]

    [14]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

    [15]

    Raybaut M, Schmid T, Godard A, Mohamed A K, Lefebvre M, Marnas F, Flamant P, Bohman A, Geiser P, Kaspersen P 2009 Opt. Lett. 34 2069

    [16]

    Ishii S, Mizutani K, Fukuoka H, Ishikawa T, Baron, P Iwai H, Aoki T, Itabe T, Sato A, Asai K 2010 Proc. SPIE 7860, Lidar Remote Sensing for Environmental Monitoring XI Incheon, Republic of Korea, October 28, 2010 786004

    [17]

    Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020702 (in Chinese) [葛烨, 胡以华, 舒嵘, 洪光烈 2015 物理学报 64 020702]

    [18]

    Yan J X, Gong S S, Liu Z S 2011 Environmental monitoring lidar (Beijing: Science Press) (Ed. 2nd) pp184-185 (in Chinese) [阎吉祥, 龚顺生, 刘智深 2011 环境监测激光雷达 (北京: 科学出版社) (第2版) 第184-185页]

    [19]

    Gong W, Ma X, Dong Y N, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [20]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, Boudon V, Brown L 2013 J. Quant. Spectrosc. Ra. 130 4

    [21]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Ra. 110 533

    [22]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [23]

    Xiang C Z, Gong W, Ma X, Cheng X W 2014 Acta Optia Sinica 9 161 (in Chinese) [相成志, 龚威, 马昕, 程学武 2014 光学学报 9 161]

    [24]

    Zhang J Q, Pan L, Wang S G 2009 Photogrammetry (Hubei: Wuhan University Press) pp152-157 (in Chinese) [张剑清, 潘励, 王树根 2009 摄影测量学 (湖北: 武汉大学出版社) 第152-157页]

  • [1] Xiong Feng, Peng Zhi-Min, Wang Zhen, Ding Yan-Jun, Lü Jun-Fu, Du Yan-Jun. Accurate measurement of trace H2S concentration based on cavity ring-down absorption spectroscopy under CO2/CO disturbance. Acta Physica Sinica, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [2] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Peng Zhi-Min. Monitoring of ambient methane and carbon dioxide concentrations based on wavelength modulation-direct absorption spectroscopy. Acta Physica Sinica, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [3] Wang Qian, Bi Yan-Meng, Yang Zhong-Dong. Simulation analysis of aerosol effect on shortwave infrared remote sensing detection of atmospheric CO2. Acta Physica Sinica, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [4] Shao Jun-Yi, Lin Zhao-Xiang, Liu Lin-Mei, Gong Wei. Measurement of absorption spectrum around 1.572 μm. Acta Physica Sinica, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [5] Li Zhi-Bin, Ma Hong-Liang, Cao Zhen-Song, Sun Ming-Guo, Huang Yin-Bo, Zhu Wen-Yue, Liu Qiang. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient CO2 at 2 μm. Acta Physica Sinica, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [6] Wu Feng-Cheng, Li Ang, Xie Pin-Hua, Chen Hao, Ling liu-Yi, Xu Jin, Mou Fu-Sheng, Zhang Jie, Shen Jin-Chao, Liu Jian-Guo, Liu Wen-Qing. Dectection and distribution of tropospheric NO2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2015, 64(11): 114211. doi: 10.7498/aps.64.114211
    [7] Li Yan-Peng, Yu Shu-Juan, Chen Yan-Jun. Wavelength-dependent perpendicular-harmonics efficiency from oriented CO2 molecule. Acta Physica Sinica, 2015, 64(18): 183102. doi: 10.7498/aps.64.183102
    [8] Han Ge, Gong Wei, Ma Xin, Xiang Cheng-Zhi, Liang Ai-Lin, Zheng Yu-Xin. A ground-based differential absorption lidar for atmospheric vertical CO2 profiling. Acta Physica Sinica, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [9] Zhu Xiang-Fei, Lin Zhao-Xiang, Liu Lin-Mei, Shao Jun-Yi, Gong Wei. Influence of temperature and pressure on absorption spectrum of around 1.6 m for differential absorption lidar. Acta Physica Sinica, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] Liu Hao, Shu Rong, Hong Guang-Lie, Zheng Long, Ge Ye, Hu Yi-Hua. Continuous-wave modulation differential absorption lidar system for CO2 measurement. Acta Physica Sinica, 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [11] Zhou Hai-Jin, Liu Wen-Qing, Si Fu-Qi, Dou Ke. Retrieval of surface NO2 mixing ratio from multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [12] Wang Ting, Wang Pu-Cai, Yu Huan, Zhang Xing-Ying, Zhou Bin, Si Fu-Qi, Wang Shan-Shan, Bai Wen-Guang, Zhou Hai-Jin, Zhao Heng. Intercomparison of slant column measurements of NO2 by ground-based MAX-DOAS. Acta Physica Sinica, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [13] Sun You-Wen, Xie Pin-Hua, Xu Jin, Zhou Hai-Jin, Liu Cheng, Wang Yang, Liu Wen-Qing, Si Fu-Qi, Zeng Yi. Measurement of atmospheric CO2 vertical column density using weighting function modified differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [14] Wang Yang, Xie Pin-Hua, Li Ang, Zeng Yi, Xu Jin, Si Fu-Qi. Measurement of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy in Hefei city. Acta Physica Sinica, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [15] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Liu Wen-Qing. Determination of tropospheric NO2 by airborne multi axis differential optical absorption spectroscopy. Acta Physica Sinica, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [16] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [17] Meng Da-Qiao, Luo Wen-Hua, Li Gan, Chen Hu-Chi. Density functional study of CO2 adsorption on Pu(100) surface. Acta Physica Sinica, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [18] Ding Chang-Lin, Wan Chong-Yi. Multifrequency dynamical model of pulsed CO2 lasers. Acta Physica Sinica, 2006, 55(3): 1165-1170. doi: 10.7498/aps.55.1165
    [19] FAN PIN-ZHONG, E.FILL. EXPERIMENT ON WAVELENGTH MATCHES BETWEEN PUMPING AND ABSORBING LINES IN PHOTO-RESONANT X-RAY LASERS. Acta Physica Sinica, 1996, 45(2): 205-209. doi: 10.7498/aps.45.205
    [20] FU EN-SHENG, WANG YU-MIN, CHENG ZHAO-GU, DOU AI-RONG. ELECTRO-OPTIC FREQUENCY SHIFT OF 10.6μm CO2 LASER LINE. Acta Physica Sinica, 1979, 28(5): 24-31. doi: 10.7498/aps.28.24
Metrics
  • Abstract views:  4893
  • PDF Downloads:  204
  • Cited By: 0
Publishing process
  • Received Date:  04 February 2015
  • Accepted Date:  19 April 2015
  • Published Online:  05 August 2015

/

返回文章
返回